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Abstract—Real-time detection of seizure activities in epileptic
patients is crucial and can help improve patients’ quality of life.
Accurate evaluation, pre-surgery assessments, seizure prevention,
and emergency alerts for medical aid all depend on the rapid
detection of the onset of seizures. A new method of feature
selection and classification for rapid and precise epileptic seizure
detection is discussed. In this solution, informative components
of Electroencephalogram (EEG) data are extracted and an auto-
matic method is presented using Infinite Independent Component
Analysis (I-ICA) to select efficiently independent features. The
feature space is divided into subspaces via random selection,
and multi-channel Support Vector Machines (SVMs) are used
to classify the subspaces; then, the result of each classifier is
combined by majority voting to find the final output. To evaluate
the solution, a benchmark clinical intracranial EEG (iEEG) of
eight patients with temporal and extratemporal lobe epilepsy
has been considered in a multi-tier cloud-computing architecture.
Via the leave-one-out cross-validation, accuracy, sensitivity, speci-
ficity, and false positive and false negative ratios of the proposed
method are 0.95, 0.96, 0.94, 0.06, and 0.04, respectively, which
confirm the effectiveness of the proposed solution.

Index Terms—Brain-Computer Interface; Cloud Computing;
Electroencephalogram; Epileptic Seizures; Pervasive Computing.

I. INTRODUCTION

Motivation: Two or more epileptic seizures accruing in

a 24-hour period is considered as epilepsy. The prevalence

of epilepsy in developed countries has been reported as

ranging from 4 to 10 cases per 1000, while that observed

in developing countries has been reported as 14 to 57 per

1000 [1]. The best strategy to prevent epileptic seizures is

to detect them accurately at onset and to attempt promptly

the appropriate therapy (e.g., by administering anticonvulsant

drugs or applying brain neurostimulation), which depends

on several factors including the frequency and severity of

the seizures as well as the person’s age, overall health, and

medical history. Unfortunately, there are several problems

with detecting the onset of epileptic seizures. First, seizure

recognition cannot be performed by the patients themselves as

many of them do not receive any warning sign before seizures

or are not able to press an alarm button during seizures [2].

Second, while neurologists and trained physicians can detect

the onset of epileptic seizures by visually scanning large

quantities of continuous Electroencephalograms (EEGs), the

procedure for doing so is quite complex and time consuming,

and it sometimes leads to disagreements among physicians [3].

Third, even when physicians are capable of detecting the onset,

they are most likely not available to conduct the diagnosis and

administer the therapy quickly enough [4].

In some applications such as responsive neurostimula-

tion [5] a successful therapy depends on the rapid detection

of the onset of seizures. Consequently, developing autonomic-

computing methods via Brain-Computer Interface (BCI) for

epileptic seizure detection would greatly assist clinical care.

Vision: The goal of autonomic computing is freeing the

human mind from low-level details to create computing sys-

tems with self-management capabilities. By using autonomic-

computing concepts in epilepsy health care, we frame the

problem as one of designing an autonomic system whose

goal is to regulate automatically the human brain so as to

prevent it from suffering a full-blown epileptic seizure. Such

a closed-loop automatic system can be implemented in two

separate steps: the first would consist in developing a BCI to

detect onset of epileptic seizures; the second would concern

the application of an appropriate neurostimulation signal to

remove the seizures. In this study, we focus on the first

step, i.e., seizure detection, where a high detection accuracy—

especially in terms of false positives and false negatives—

is key. For example, a false positive in which the system

detects a seizure when there is none may lead to exposing the

patient’s brain to an unnecessary level of radiation, whereas a

false negative would cause the system to fail in detecting and,

consequently, preventing an epileptic seizure.

Challenges: For automatic seizure detection, we need to

extract appropriate features from the EEG signal and then

classify it as normal or epileptic based upon them. Since

the scalp has low conductivity, the EEG signal is attenuated

and distorted with noise and artifacts, which makes feature

extraction and classification prone to errors. To obtain cleaner

data, we can record the EEG signal directly from the exposed

brain surface, a procedure called “intracranial EEG” (iEEG).

Recently, implanted electrodes have been used for recording

iEEG in epileptic seizure detection [6]. This method of brain

signal recording has some potential advantages such as high

spatio-temporal resolution and electro-optic mapping of the

dynamic neuronal activity. However, implanted electrodes gen-

erate massive amounts of real-time data leading to the big

(medical) data problem, which calls for a safe storage to save

the large volume of data and for high computational resources

to process it at velocity. Moreover, iEEG records a variety

of patterns with fluctuations in amplitude and frequency that

make feature extraction and classification even more chal-
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lenging. Although several methods have been developed for

detection of epileptic seizures, automatic real-time detection

of the ictal (seizure) phase still remains problematic.
Our Approach: To develop an accurate seizure-detection

system that is useful in real-life support, we need to perform

real-time signal processing, machine-learning computing, and

brain-state predictions not only on an individual data set

but also on large data sets collected from vast user popula-

tions over extended time periods. Therefore, next-generation

BCI-EEG systems may be connected to High-Performance

Computing (HPC) servers through the Internet to adapt the

prediction models to the incoming streaming (in-transit) data.
As a first step towards a system that we believe will

ultimately reduce the suffering caused by epilepsy, we pro-

pose a cloud-computing framework that automatically detects

epileptic seizures. Cloud computing provides a simple way to

access storage, databases, and computational resources over

the Internet. This growing area of IT services offers ubiqui-

tous access with the potential to increase agility with lower

costs. The proposed service platform makes decision based

on comparing the extracted EEG patterns with the cloud data.

Our seizure-detection framework, as shown in Fig. 1, is com-

posed of: (i) resource provider, (ii) data provider, (iii) service

requester, (iv) arbitrator, and (v) cloud storage. Resource and

data providers provide computational resources and training

data, respectively, for seizure detection. A service requester has

the duty of arranging requests for the framework. An arbitrator

processes the request from a service requester, determines the

set of service providers, and distributes the workload tasks

among the resource providers. Finally, cloud storage saves the

processed data as history of the patient. Pervasive-computing

systems have the great potential of effectively understanding

brain activities and can be developed to improve health care

in different ways. Using new high data-rate telecommunica-

tion technologies and cloud-based pervasive computing, the

Quality of Life (QoL) of epileptic patients can be improved

tremendously via real-time seizure detection.
Our Contributions: We introduce a cloud-based pervasive

data-collection and analysis framework for automatic and real-

time seizure detection. Since one of the main goals in seizure

detection is extracting the rhythmic nature of brain signals,

a wavelet transform is used to divide the signal into differ-

ent frequency bands. We also extract multiple features from

different domains used for classification purposes. Then, we

propose a new technique for feature selection based on Infinite

Independent Component Analysis (I-ICA). Lastly, we present

a new classification method based on ensemble learning and

randomness that aims at increasing the sensitivity and decreas-

ing the false detection rate. To sum up, our contributions are:

• A seizure-detection system implemented in the cloud;

• A feature-selection technique using I-ICA, which extracts

independent features and infers the number of features

automatically from data;

• A random subspace ensemble method using Support Vec-

tor Machines (SVMs) as the base classifiers for parallel

classification fitting big data problems.

Fig. 1. Cloud-computing framework enabling pervasive healthcare for epilep-
tic patients, which is composed of: resource provider, data provider, service
requester, arbitrator, and cloud storage. To adapt the prediction models to the
real-time incoming data, next generation BCI-EEG systems may be connected
to High-Performance Computing (HPC) servers through the Internet.

To study the classification performance, the system is eval-

uated and compared against other relevant methods on an

available benchmark seizure dataset. The results corroborate

the effectiveness of our seizure-detection system as well as its

usefulness in real-life support for people with epilepsy.

Paper Outline: The rest of the paper is organized as

follows. In Sect. II, the state of the art is presented. In Sect. III,

we introduce the system model and detail the architecture, pre-

processing, processing (feature selection), and post-processing

(classification) steps. In Sect. IV, we validate our assumptions

through simulations and show the benefits of our solution over

existing ones. In Sect. V, the real-time framework and its

application are discussed. Finally, in Sect. V, we draw the

conclusions and wrap up the paper by discussing future work.

II. STATE OF THE ART

Many algorithms have been recently proposed and modified

for seizure detection using EEG and iEEG. Frequency is a key

characteristic that has been used in the literature to define ab-

normality in brain signals. In [7], the authors present a wavelet-

based algorithm to examine how different frequency ranges in

iEEG fluctuate from the background. Authors in [8] propose an

algorithm based on artificial neural networks for classification

of EEG signals into healthy, ictal, and interictal. In [9], the

authors present an adaptive thresholding technique based on

Short Time Fourier Transform (STFT) to find the power

spectrum in EEG segments and seizure identification. Using

wavelet, in [10] a real-time automated and patient-independent

algorithm for detecting absence seizures in WAG/Rij rats as a

valid animal model of human absence epilepsy is discussed.

In general, existing works have been developed for local

processing and storage without considering multiple channels

and big patient data. Since accurate detection of seizures

requires analyzing long-term multiple channels, existing works

fall short as they do not exploit in full the data available. For

a rapid real-time monitoring system, the massive amount of

data from different EEG electrodes needs to be stored and
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Fig. 2. Conceptual architecture of proposed EEG seizure detection system developed in a multi-tier distributed computing infrastructure and a semantic linked
data superstructure. First tier consists of wireless EEG devices and smart phones. Second tier consists of Mobile Device Cloud (MDC) and third tier consists
of cloud computing infrastructure. The proposed architecture supports two operation scenarios: (1) Big data analysis using cloud computing paradigm, (2)
Interactive and adaptive prediction using real-time brain state and relevant data sets for training and refining brain state prediction.

processed, which is only doable via a cloud-based framework.

However, applications of cloud platforms in medicine are still

in their infancy and there are only a few studies that have been

recently reported. A cloud-based interface to compute cardiac

measures using the MapReduce parallel-programming frame-

work is developed in [11] for large volumes of electrophysio-

logical signals. In [12], a pervasive on-line BCI-EEG system

using multi-tier fog and cloud computing, semantic linked data

search, and adaptive classification models is presented. All in

all, existing techniques of feature selection and classification

are not suitable for real-time processing and implementation

in the cloud because of their execution time, data overfitting,

low sensitivity, and high error rate. In contrast, we propose a

new method for EEG feature selection and classification that

exploits the advantages of cloud computing and to simultane-

ously increase detection accuracy and decrease error rate.

III. PROPOSED WORK

The proposed system for automatic seizure detection is de-

signed to be performed in the cloud. In this study, a pervasive-

computing application for real-time generalized seizure de-

tection is developed, which can be implemented as a cloud-

based service. In Sect. III-A, we present an architecture of

the BCI-EEG system connected to cloud servers; then, we

introduce the seizure-detection system, which consists in per-

forming the following main steps: preprocessing and feature

extraction, feature selection by I-ICA, and classification by

random ensemble learning. In Sect. III-B, the effects of various

sources of noise and artifact are attenuated by filtering. Then,

different time and frequency features are extracted for the

classification step. In Sect. III-C, we reduce the number of

features by I-ICA; this technique increases the classification

accuracy by eliminating less-effective features and reduces the

computational time by decreasing the number of total features.

In Sect. III-D, by random selection of feature subsets, we

develop a classification method via ensemble learning that is

compatible with high-dimensional data such as iEEG. Then,

Majority Voting (MV) is used to aggregate the outputs, achieve

consensus, and determine normal vs. epileptic patterns. This

new classification method is based on a parallel classification,

which makes it appropriate for the big data problem.

A. Conceptual Architecture

The seizure-detection system is proposed as a multi-tier

distributed computing structure based on Mobile Device

Cloud (MDC) and cloud computing, as shown in Fig. 2. In

this architecture, MDC executes tasks in parallel by sharing

the workload among multiple nearby mobile devices [13]. The

iEEG sensors, dry-electrodes EEG headsets, and smart phones

are in the first tier as the interfaces between human and IT

technology. An ad-hoc conglomerate of IT devices such as

notebooks and home-gateways are in the second tier as MDC

for computing purpose. Each MDC server works dually as a

data hub and a signal processor. The proposed workflow of sig-

nal processing steps—which is shown in Fig. 3 along with its

pseudocode in Algorithm 1—extracts time-frequency features

from the EEG signals, selects the most informative features,

and sends them to the brain state classifiers. These features

can also be passed to the next tier for further processing and

archiving.

HPC clusters are in the third tier as cloud servers for

delivering plenty of computing power, storage capacity, and

communication bandwidth to offload the computing burden of

the second tier. State-of-the-art techniques for communicating

between each tier are Message Queuing Telemetry Trans-

port (QMTT) protocol for interacting between EEG-MDC

and RESTful Web Service for interacting between MDC-

Cloud. For sending data from the first to the second tier using

Bluetooth 4.0 protocol and IEEE 802.11n low-power Wi-Fi

technology, a transfer rate of up to 24 Mbps is supported.

With cloud computing, EEG data transport latency through

the Internet core runs between 200 and 500 ms [12].
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Fig. 3. Workflow of the proposed method consisting of noise and artifact
reduction, wavelet, time/frequency-based feature extraction, infinite ICA,
ensemble learning by random subspace, ensemble SVM, and majority voting.

Using MDC between cloud and brain sensors delivers two

advantages: it provides sub-second real-time responses with

minimal communication overhead; and it reduces the amount

of traffic between the local area networks and the Internet.

As a matter of fact, most of the data sets will be processed

and stored in the MDC; therefore, only meta-data needing high

computing resources or storages will be uploaded to the cloud.

B. Preprocessing and Feature Extraction

Human internal signals, environmental noise, artifact, and

adjacent electrode interference can affect and destroy the

information content in iEEG [14]. As first step, some noise and

artifacts are removed by filtering. A fourth-order Butterworth

bandpass filter is used for cutting signal frequencies; then,

to remove unwanted frequencies, a notch filter is applied.

Finally, phase distortion is cancelled by using forward and

backward filtering. Due to the time-varying nature of iEEG,

wavelet transforms can be useful for extracting epileptic spike

and capturing the rhythmic nature of seizures; moreover,

wavelets have the ability to capture the transient features and

to localize them in both time and frequency domains [15].

Then, the outputs of filtering and wavelet transform are used to

extract seizure-related features. For this purpose, several time-

and frequency-related features have been considered including

complexity, mobility, energy, entropy, correlation coefficients,

Fast Fourier Transform (FFT), variance, skewness, kurtosis,

mean, fractal dimension, frequency band power, peak am-

plitude, zero crossing, average spectral power, line length,

maximal and minimal values, sum absolute value, and some

others. Some of these features are defined below.

Hurst Exponent: The iEEG signals including seizure waves

consist of various observed signals and independent sources.

Algorithm 1: Proposed Seizure Detection System

Input: Q-dimensional EEG/iEEG Signal

s = [s1, · · · , sQ]T
Output: classification to seizure (0) or normal (1)

£→ (0, 1)
begin
for i := 1→ Q do

y = [y1, · · · , yN ]T

end
x = I − ICA(y)
for j := 1→#Subspaces(P ) do

rj = RandomSubspace(x)
vj = EnsembleSVM(rj)

end
for j := 1→ P do

£ = MV (vj)
end
end

We apply ICA to decompose mixed iEEG signals into a set of

independent components. Then, we extract the Hurst exponent

to find which of the components include epileptic spikes.

The range of 0.25–0.45 mV is considered as an epileptic

spike [16].

Entropy: The entropy of a signal s, which measures the

degree of uncertainty, is given as,

H(s) = −
Q∑
i=1

si ln(si), (1)

where i is the index of the samples and Q is the total number

of samples per signal segment. We consider the disorder of

iEEG segment as a way to find a seizure.

Amplitude: In general, the amplitude of the rhythmic seizure

component is greater than in the normal state. Therefore,

we extract features based on the signal amplitude, including

relative average, coefficient of variation, and duration. To have

a normalized measurement, each iEEG epoch is divided by the

mean value of the iEEG segment.

Energy: The energy of a signal, given as,

E(s) =
Q∑
i=1

|si|2. (2)

can also be considered as an indicator of a seizure; the higher

the energy, the higher the probability of a seizure.

Skewness: The degree of deviation from the symmetry of

a Gaussian distribution, which is the third central moment of

the amplitude histogram, is measured by the skewness, i.e.,

SK(s) =

∑Q
i=1

(si−s̄)3

N(∑Q
i=1

(si−s̄)2

Q−1

)3/2
, (3)

where s̄ is the mean value. For iEEG signals with a sym-

metrical distribution, the skewness has a nonzero value and it

indicates the presence of monophasic events.

212



Fig. 4. Wavelet tree showing synthesize signal (s), detail coefficients (d), and
approximation coefficients (a).

C. Feature Selection via Infinite ICA

Given a feature space y ∈ R
N , feature-selection methods

find a mapping x = f(y) : RN → R
M (M < N ) such that

the transformed feature vector x ∈ R
M preserves the most

information of y. Various feature-selection methods have been

proposed to extract a more informative subset of features for

classification such as Principal Component Analysis (PCA)

and Independent Component Analysis (ICA). These useful

statistical feature extractors aim at generating uncorrelated

and independent features, respectively. PCA as a decorrelation

technique performs a linear mapping of data to a lower-

dimensional space in such a way that the variance of the data

in the low-dimensional space is maximized.

In general, the correlation matrix of data is constructed

and the eigenvectors of this matrix are computed. Then, the

eigenvectors corresponding to the largest eigenvalues are used

to construct the matrix of PCA transformation. In contrast to

PCA, which uses the second-order statistics to convert a set

of possibly correlated components into a set of uncorrelated

components, ICA makes the mutual information of compo-

nents equal to zero and depends on all higher-order statistics

of y. More precisely, ICA transforms the observed data y
using a linear transformation G into independent components

x as y = Gx+ e, where e denotes the Gaussian noise [17].

Although PCA and ICA select the feature vector in a

lower dimension, they cannot infer the dimensionality of the

new-feature vector, i.e., the number of new features must be

determined in advance. To solve this problem, we propose to

use an extension of ICA, called Infinite ICA (I-ICA) [18],

which can also infer the number of independent features

automatically from the input data. Previously, this model was

successfully applied on various applications such as image

denoising, gene expression modeling, image classification and

retrieval, and sound source separation [19], [20]; however, this

is the first time I-ICA is used in EEG data processing.

For masking on hidden source x, a binary vector z is

determined, where its elements show activity of kth hidden

source for the ith data point. This gives us,

Y = G[X� Z] +E, (4)

where Y,X,Z,E denote the concatenation of {yi}Ni=1,

{xi}Ni=1, {zi}Ni=1, and {ei}Ni=1, respectively; and � denotes

the element wise multiplication. Since Z has infinitely many

rows, an infinite number of hidden sources can be achieved.

Algorithm 2: Feature Selection by I-ICA

Input: N-dimensional features y = [y1, · · · , yN ]T

Output: M-dimensional Selected features

x = [x1, · · · , xM ]T

begin
for i := 1→ N do

Y = concatenation{yi}Ni=1

end
Calculate p(Z|π1, ..., πK) by (5)

for k := 1→ K do
for i := 1→ N do

Find μ± and σ2 and e◦ki by (7)

Find p(xk|G, x−ki, yi, zi) by (6)
end

end
Find X by (4)

Extract x from X
end

For N data points and K hidden sources, the distribution of

matrix Z is defined by,

p(Z|π1, ..., πK) =
K∏

k=1

N∏
i=1

P (zki|πk) =
K∏

k=1

πmk

k (1− πk)
N−mk ,

(5)

where zki indicates activity of kth source for ith sample using

probability of πk and mk =
∑N

i=1 zki indicates the total

number of active sources. To define E, a Gaussian noise has

been considered with variance σ2
e . Finally, for inferring X

hidden sources from Y observed data using the G mixing

matrix (which has Z active sources), an inference is defined.

Gibbs sampling is used to sample elements with zki = 1.

This sampling proceeds by sampling successively from the

conditional distribution of one parameter given all others by

Baye’s rule [18]. Therefore, the result is a piecewise Gaussian

distribution that is defined by,

p(xki|G, x−ki, yi, zi) =

{N (xki;μ−, σ2) if xki > 0
N (xki;μ+, σ

2) if xki < 0,
(6)

where

μ± =
gT
k e◦ki±σ2

e

gT
k gk

, σ2 =
σ2
e

gT
k gk

, e◦ki = (eki|zki = 0), (7)

and gk is the kth column of G.

The proposed method for feature selection is described

in Algorithm 2. In Sect. IV, we discuss how the algorithm

successfully extracts independent components of EEG features

and is also able to indicate when the sources are active. The

I-ICA characteristics make it a good candidate for feature

selection in big data problems. Moreover, by reducing the

number of features this technique makes the classification task

less complex and therefore faster, which is a requirement for

real-time classification.
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Fig. 5. Random Subspace ensemble with SVM as the base classifiers using I-
ICA for feature selection. The feature space is y ∈ R

N ; the feature selection
method (I-ICA) finds a mapping x = f(y): RN → R

M (M < N ). Random
Subspace utilizes random subsets in the feature space and makes P subspaces
denoted by r1, ..., rP . Then, SVM’s classifiers are used on each subspace
to classify the input data as healthy or epileptic. Finally, using Majority
Voting (MV), the output with the highest number of votes is chosen.

D. Random Subspace Ensemble Classification

Most of the existing iEEG works use only a small training

dataset, notwithstanding the inherent high dimensionality of

the problem, which makes features-to-instance ratio extremely

high. It has been shown that training a classifier by a small

training dataset with high dimensionality leads to low classifi-

cation performance due to overfitting [21]. To address this

problem and also reduce the computational load, which is

necessary for real-time and pervasive analysis, we propose

a new classification technique, namely a Random Subspace

ensemble method with SVM as the base classifiers (see Fig. 5).

To avoid overfitting caused by high dimensionality and

small size data, ensemble learning techniques have been

considered as alternative to single classifiers. These techniques

combine weak classifiers and aggregate multiple learning

algorithms to provide a collective decision and improve overall

learning performance. Random subspace ensemble method

uses a random sample of features instead of using all the

features. Unlike other ensemble techniques such as Bagging

and AdaBoost [22], which utilize random subsets of the

samples in the input training space, Random Subspace utilizes

random subsets in the feature space. In our solution, decision

rules in each SVM classifier are learned with a randomly-

selected feature subspace using all the training samples. The

M dimensional output of I-ICA is randomly divided into P
subspaces denoted by r1, ..., rP .

After preparing the feature subspaces, SVMs as an efficient

classifier are used on each subspace to classify the input data

as normal or epileptic. A nonlinear function Φ(r) is used to

map input space into a higher-dimensional feature space that

Algorithm 3: Random Subspace Ensemble Classification

Input: M-dimensional Selected features,

x = [x1, · · · , xM ]T

Output: Classification result as seizure (0) or normal (1),

z → (0,+1)
begin
for i := 1→#subjects do

Find train input by eliminate i-th column of X
Find test input using i-th column of X
Find train target by eliminate i-th column of target
Find target test using i-th column of target
for i := 1→#SVMs(P ) do

Find train features as RandomSubspace of

train input

Find k(ri, rj) by (10)

Calculate quadratic optimization for w(α)
Perform SVM training by (train input,

train target, k(ri, rj))
Find vj by train features by (8)

end
Find final output by MV of vj

end

corresponds to a linear surface in the feature space. For each

classifier, the decision function v is found by,

v = sgn(w.Φ(r)− b), (8)

where b is a bias and sgn is the sign of a real number.

Then, the classification problem is defined as distinguishing

normal against seizure features. This is done by identifying

an hyperplane 2
‖w‖ that divides the features of two classes,

which corresponds to the problem of maximizing a quadratic

function of defined variables subject to their linear constraints.

Such quadratic programming optimization is solved by,

w(α) = 0.5 ‖w‖2 − α[o(w.Φ(r)− b)− 1], (9)

where α is defined as a set of Lagrange multipliers.

Since most of the time iEEG training sets are not separa-

ble using a linear function, a Gaussian Radial Basis Func-

tion (GRBF) kernel is used to minimize the classification

error [23]. This kernel function is defined as,

k(ri, rj) = ΦT (ri).Φ(rj) = exp{‖ri − rj‖22/2σ2}, (10)

where ri and rj are two feature vectors, and ‖ri − rj‖22 is the

squared Euclidean distance between ri and rj . Finally, as a

standard rule for combining the results of all classifiers, Ma-

jority Voting (MV) is used. By the use of MV, the output with

the highest number of votes is considered as the final output

of the overall system. Since the strength of a correlation does

not necessarily predict the outcome for a new observation,

cross-validation technique is used for increasing the generality,

which can assess how the results of a statistical analysis can be

generalized to an independent data set. We used leave-one-out

as an exhaustive cross validation for directly estimating the
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Fig. 6. Synthesized signal for 1-second seizure data segment: S, 6 levels of
approximation coefficient: a1-a6 (Left), 6 levels of detail coefficients: d1-d6
(Right). The x-axis represents samples and the y-axis shows the signal in μV .
Scale 4-6 of detail coefficients represent seizure activity.

Fig. 7. EEG segments of 32 channels showing epileptiform normal variants
in a few channels (top) and its stack EEG segments (bottom) in highlighted
areas. The horizontal line is Time [s] and the vertical line is Amplitude [μV].

predictive accuracy of a particular statistical model. For this

purpose, the model is fitted to subsets of data and the accuracy

of the model is found with held-out sample. The pseudocode

of the proposed classification method is shown in Algorithm 3.

IV. PERFORMANCE EVALUATION

A proof-of-concept prototype of the proposed pervasive

EEG-based seizure detector was developed, where we used

a benchmark epileptic dataset for the first tier; an HP laptop

with Intel i5 processor, 8 GB RAM, and a 4.4 Ah battery

for the second tier; and a supercluster of computers hosted by

TABLE I
SOURCE OF VARIABILITY, SUM OF SQUARES (SS) OF EACH SOURCE,

DEGREES OF FREEDOM (DF) OF A SOURCE, MEAN SQUARE (MS) AS THE

RATIO SS/DF, RATIO OF THE MEAN SQUARES AS F-STATISTIC, AND

P-VALUE DERIVED FROM THE CUMULATIVE DISTRIBUTION

FUNCTION (CDF) OF F ARE SHOWN AS THE STANDARD ANOVA.

Group Source SS df MS F-statistic p-value

Columns 2.89e+09 8 3.62e+08 11.45 1.85e-14
Normal Error 1.11e+10 351 3.16e+07

Total 1.39e+10 359

Columns 1.96e+10 8 2.45e+09 21.92 4.64e-27
Seizure Error 3.92e+10 351 1.11e+08

Total 5.88e+10 359

Amazon Elastic Compute Cloud (EC2)1 as the third tier.

The clinical iEEG dataset of eight patients (52 normal and

52 seizure segments) with temporal and extratemporal lobe

epilepsy has been used, which was jointly developed by the

U. of Pennsylvania and the Mayo Clinic, and sponsored by

the American Epilepsy Society [24]. The iEEGs are recorded

in depth electrodes implanted along anterior-posterior axis of

the hippocampus, and in subdural electrode grids in various

locations.2 Seizure data segments (labeled ictal) and non-

seizure data segments (labeled interictal) by sampling rate

from 500 to 5, 000 Hz have been used for training and testing.

The entire seizures were recorded in the ictal data segments

and all data are organized into 1 s EEG clips. The mean

seizure duration for each subject is covered in the interictal

data segments with the restriction of no less than one hour

before or after a seizure.

As first step, various sources of noise and artifacts are atten-

uated via filtering, where a fourth-order Butterworth bandpass

filter (0.5-150 Hz) is used for cutting frequencies. Then, to

remove some unwanted frequency of oscillator, a notch filter

set at 50 Hz is applied. In the next step, the phase distortion

is cancelled by using forward and backward filtering. The

appropriate wavelet and level of decomposition are chosen

based on the input signal and application. Based on our

evaluation of common wavelets, we use Daubechies 4 (db4)

to find approximation and detail for iEEG data. Since seizure

activities at iEEGs commonly occur in 3-25 Hz, the detail

coefficients have been investigated to find this frequency range.

First, we consider sampling frequency of the data (500 Hz).

By the Nyqvist criteria, the maximum frequency of data is

obtained at 250 Hz. Finally, by coefficient representation in

each scale, the frequency range of 3-30 Hz is covered in scales

of 4, 5, and 6. The 6 levels of approximation coefficient (a1-

a6) and the corresponding detail coefficients (d1-d6) are shown

in Fig. 6. The seizure is covered in d4-d6 scales.

Many EEG patterns that resemble epileptogenic abnor-

malities are not associated with epilepsy or any neurologic

conditions such as small sharp spikes, wicket spikes, phantom

1Amazon EC2 is a web service that provides resizable compute capacity
in the cloud; its web-service interface allows users to obtain and configure
capacity, which provides a complete control of the computing resource.

2Hybrid depth and subdural electrodes contain clinical macroelectrodes
and additional microwire arrays; they are manufactured by Adtech Medical
Instrument Corporation, Racine, WI and by PMT Chanhassen, MN.
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Fig. 8. Graphical depiction of some metrics on the extracted features
for normal group. Amplitude maximum (multiplied by scaled factor 100),
variance, energy (multiplied by scaled factor 0.01), skewness, power, sum
of absolute value (multiplied by scaled factor 100), FFT, and mean value
(multiplied by scaled factor 0.01) are shown, respectively. Outliers are plotted
by plus signs.

waves, and paroxysmal rhythmic discharges [25]. Since such

patterns have no clinical significance for seizure detection,

they are called epileptiform normal variants. These patterns

are one of the major causes of false seizure detection in

automatic methods. However, their recognition is important

for avoiding over-interpretation. After analyzing this type of

patterns, we remove the features that resemble those patterns

(see Fig. 7) using frequency filtering followed by block scaling

of amplitude and slope [26].

Table I displays the results of a standard ANOVA anal-

ysis [1], while Figs. 8 and 9 depict some metrics on the

extracted features for normal and seizure subjects by quartile.

The large F-statistic and small value of p in Table I correspond

to a large difference in the center lines of the box plots between

Figs. 8 and 9. In the proposed ensemble method, we use

64 features as the input parameters of SVMs. In this study,

by random selection of features in each subset, we find five

subsets of features. Then, features in each subset are used

to train an SVM. Such randomness combination of multiple

features provides a better classification accuracy compared to

using all of the features.

TABLE II
ACCURACY, SENSITIVITY, SPECIFICITY, FPR, AND FNR FOR PROPOSED

CLASSIFICATION COMPARED WITH THE OTHER METHODS

Methods Accuracy Sensitivity Specificity FPR FNR

Proposed Method 0.95 0.96 0.94 0.06 0.04
Proposed Method (linear) 0.91 0.92 0.90 0.10 0.08
MLP Neural Network 0.82 0.81 0.83 0.17 0.19
Linear SVM 0.84 0.83 0.85 0.15 0.17
Non-linear SVM 0.85 0.85 0.87 0.13 0.15

Fig. 9. Graphical depiction of some metrics on the extracted features for
the seizure group. Maximum amplitude (multiplied by scaled factor 100),
variance, energy (multiplied by scaled factor 0.01), skewness, power, sum
of absolute value (multiplied by scaled factor 100), FFT, and mean value
(multiplied by scaled factor 0.01) are shown, respectively. Outliers are plotted
by plus signs.

Figures 10 and 11 show the result of linear and nonlinear

classification, respectively, for one of the five random subset

of features. We define the following performance metrics

to evaluate and compare our results against previous meth-

ods. Accuracy measures the proportion of both seizure and

normal signals that are correctly identified as epileptic and

healthy, respectively. Sensitivity (true positive rate) measures

the proportion of seizure signals that are correctly identi-

fied as seizures. Specificity (true negative rate) measures the

proportion of normal signals that are correctly identified as

normal. False Positive Ratio (FPR) measures the proportion

of normal signals that are incorrectly identified as seizures.

Finally, False Negative Ratio (FNR) measures the proportion

of seizure signals that are correctly identified as normal [27].

Using the leave-one-out cross-validation approach, the perfor-

mance results are as follows: accuracy=0.95, sensitivity=0.96,

specificity=0.94, FPR=0.06 , and FNR=0.04. The classification

results of our method with non-linear and linear base classi-

fiers are compared to single SVM and Multi-Layer Percep-

tion (MLP) Neural Network in Table II. The neural-network

structure is designed in three layers using the Levenberg-

Marquardt optimization for the training phase. Experimental

results in Table II show that the random subspace method

outperforms previous methods for a subset of features selected

by our proposed method.

V. DISCUSSION AND FUTURE WORK

There is a crucial need to develop new methods using

advanced technologies such as cloud and mobile computing

in order to assist in the processing of EEG data and develop
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Fig. 10. Results of linear classification in one subset of features (P1, P2),
which are made with I-ICA. Red signs show features extracted from the
seizure group, green signs show features extracted from the normal group,
and the blue sign is a test signal, which is originally a normal brain activity
that is correctly identified and classified as normal by the classifier.

pervasive computing applications such as real-time seizure

detection. Our system’s service platform can be hosted at

a remote location and may be used anywhere via Internet.

Instead of installing the seizure-detection program on multiple

computers, a web-based platform can be of support in such a

way as to guarantee greater accessibility, higher security, and

little financial cost. The service model is designed as Platform

as a Service (PaaS) and the computing platform is delivered in

a cloud provider. The general structure of the cloud framework

is divided into three parts—consisting of the transmission,

computing, and searching among the history patients—and the

seizure detection component is offered as a cloud service in

the PaaS. Users of the system can access the data and seizure-

detected segments without worrying about the underlying

computation and storage services, which are offered in a

transparent way to the users. The physical storage provides

in-situ and real-time access to the original and processed data.

The cost and complexity of buying, installing, updating, and

managing the underlying software layer is reduced and the

users (physicians, nurses, patients) do not have to allocate

resources manually. To study the feasibility of collaboration

within the multi-tier architecture (local and cloud servers),

the network latency offered by different servers in Amazon

EC2 was analyzed and the Round Trip Time (RTT) for servers

located at different geographical locations (Virginia, Oregon,

Singapore, and Ireland) was obtained. The RTT of 64B EEG

segments, which repeatedly have been sent from the first to the

third tier, is calculated at 10 days using the “ping” command.

The mean time is reported in Fig. 12 over different day times.

In sum, the proposed pervasive framework can be imple-

mented as a cloud-based service and it has the advantages

of cloud computing such as running detection algorithms for

multiple users simultaneously and the aggregation of data.

Fig. 11. Results of non-linear classification in one subset of features (P1,
P2), similarly to Fig. 10.

Moreover, the proposed feature selection and classification

provide a possibility of seizure detection of massive scaling,

which helps better train the classifier. Finally, computing is

not limited to the computational power of local MDC and

more complex computations can be performed in the cloud

for enhanced decision making.

As future work, we will consider additional classification

methods to improve the detection rate, e.g., random forest

and deep learning in the training phase of our ensemble

classifier. We aim at extending our framework to use his-

torical medical records of patients in order to make more

informed decisions. We also plan to study other neurological

disorders besides epilepsy such as sleep disorders, coma,

encephalopathies, and brain necrosis to develop a complete

neurological disorder system. This system will use other vital

biosignals besides EEG and will require processing a variety

of models to estimate different neurological diseases in real

time. In parallel, we will complete the autonomic loop by

considering the responsive neurostimulation signal. We plan

to work on applying an appropriate stimulation signal to

remove the seizures as the second stage of the autonomic

computing system for managing the human brain of epileptic

patients. The success of the therapeutic process is dependent

on adequate sensing of seizures and stimulation algorithms

as well as on a fast coupling between the two [5]. We plan

to conduct more experiments in order to understand how the

estimation of EEG variance can be used as feedback for

responsive neurostimulation so to implement the second stage

of autonomic computing system and regulate the human brain.

A reasonable approach initially might be to send a notification

to physicians along with summarized explanatory information

that would allow them to make their own judgment. Also, a

link that they could click on to apply the stimulation signal or

to not apply it, which could also be used to help further train

the system.
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Fig. 12. Round Trip Time (RTT) between Amazon EC2 servers (third tier)
and a local machine (first tier) for EEG clips. At any time, the lowest RTT
is observed for the server located in Virginia (the closest to our location).
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