Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications
Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications

Edited by
Manish Parashar
Xiaolin Li
To our parents....
Shyam and Shashi – Manish Parashar
Guangdong and Meixian – Xiaolin Li
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Contributors</td>
<td>xv</td>
</tr>
<tr>
<td>Biographies</td>
<td>xix</td>
</tr>
</tbody>
</table>

1. Introduction: Enabling Large-Scale Computational Science—Motivations, Requirements, and Challenges

Manish Parashar and Xiaolin Li

1. Part I Adaptive Applications in Science and Engineering

2. Adaptive Mesh Refinement MHD Simulations of Tokamak Refueling

Ravi Samtaney

29

3. Parallel Computing Engines for Subsurface Imaging Technologies

Tian-Chyi J. Yeh, Xing Cai, Hans P. Langtangen, Junfeng Zhu, and Chuen-Fa Ni

4. Plane Wave Seismic Data: Parallel and Adaptive Strategies for Velocity Analysis and Imaging

Paul L. Stoffa, Mrinal K. Sen, Roustam K. Seif, and Reynam C. Pestana

45

5. Data-Directed Importance Sampling for Climate Model Parameter Uncertainty Estimation

Charles S. Jackson, Mrinal K. Sen, Paul L. Stoffa, and Gabriel Huerta

65

6. Adaptive Cartesian Methods for Modeling Airborne Dispersion

Andrew Wissink, Branko Kosovic, Marsha Berger, Kyle Chand, and Fotini K. Chow

79
7. Parallel and Adaptive Simulation of Cardiac Fluid Dynamics 105
 Boyce E. Griffith, Richard D. Hornung, David M. McQueen, and Charles S. Peskin

8. Quantum Chromodynamics on the BlueGene/L Supercomputer 131
 Pavlos M. Vranas and Gyan Bhanot

Part II Adaptive Computational Infrastructures

9. The SCIJump Framework for Parallel and Distributed Scientific Computing 151
 Steven G. Parker, Kostadin Damevski, Ayla Khan, Ashwin Swaminathan, and Christopher R. Johnson

10. Adaptive Computations in the Uintah Framework 171
 Justin Luitjens, James Guilkey, Todd Harman, Bryan Worthen, and Steven G. Parker

11. Managing Complexity in Massively Parallel, Adaptive, Multiphysics Finite Element Applications 201
 Harold C. Edwards

12. GrACE: Grid Adaptive Computational Engine for Parallel Structured AMR Applications 249
 Manish Parashar and Xiaolin Li

13. Charm++ and AMPI: Adaptive Runtime Strategies via Migratable Objects 265
 Laxmikant V. Kale and Gengbin Zheng

14. The Seine Data Coupling Framework for Parallel Scientific Applications 283
 Li Zhang, Ciprian Docan, and Manish Parashar

Part III Dynamic Partitioning and Adaptive Runtime Management Frameworks

15. Hypergraph-Based Dynamic Partitioning and Load Balancing 313
 Umit V. Catalyurek, Doruk Bozdağ, Erik G. Boman, Karen D. Devine, Robert Heaphy, and Lee A. Riesen
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Mesh Partitioning for Efficient Use of Distributed Systems</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Jian Chen and Valerie E. Taylor</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Variable Partition Inertia: Graph Repartitioning and Load Balancing</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>for Adaptive Meshes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chris Walshaw</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>A Hybrid and Flexible Data Partitioner for Parallel SAMR</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Johan Steensland</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Flexible Distributed Mesh Data Structure for Parallel Adaptive Analysis</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Mark S. Shephard and Seegyoung Seol</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>HRMS: Hybrid Runtime Management Strategies for Large-Scale Parallel Adaptive Applications</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Xiaolin Li and Manish Parashar</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Physics-Aware Optimization Method</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Yeliang Zhang and Salim Hariri</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>DistDLB: Improving Cosmology SAMR Simulations on Distributed Computing Systems Through Hierarchical Load Balancing</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>Zhiling Lan, Valerie E. Taylor, and Yuwei Li</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>503</td>
</tr>
</tbody>
</table>
Preface

INTRODUCTION

The last decade has witnessed a dramatic increase in computing, networking, and storage technologies. In the meantime, the emerging large-scale adaptive scientific and engineering applications are requiring an increasing amount of computing and storage resources to provide new insights into complex systems. Furthermore, dynamically adaptive techniques are being widely used to address the intrinsic heterogeneity and high dynamism of the phenomena modeled by these applications. Adaptive techniques have been applied to real-world applications in a variety of scientific and engineering disciplines, including computational fluid dynamics, subsurface and oil-reservoir simulations, astronomy, relativity, and weather modeling. The increasing complexity, dynamism, and heterogeneity of these applications coupled with similarly complex and heterogeneous parallel and distributed computing systems have led to the development and deployment of advanced computational infrastructures that provide programming, execution, and runtime management support for such large-scale adaptive implementations. The objective of this book is to investigate the state of the art in the design, architectures, and implementations of such advanced computational infrastructures and the applications they support.

This book presents the state of the art in advanced computational infrastructures for parallel and distributed adaptive applications and provides insights into recent research efforts and projects. The objective of this book is to provide a comprehensive discussion of the requirements, design challenges, underlying design philosophies, architectures, and implementation and deployment details of the advanced computational infrastructures. It presents a comprehensive study of the design, architecture, and implementation of advanced computational infrastructures as well as the adaptive applications developed and deployed using these infrastructures from different perspectives, including system architects, software engineers, computational scientists, and application scientists. Furthermore, the book includes descriptions and experiences pertaining to the realistic modeling of adaptive applications on parallel and distributed systems. By combining a “bird’s eye view” with the “nitty-gritty” of advanced computational infrastructures, this book will serve as a comprehensive cross-disciplinary reference and a unique and valuable resource for students, researchers, and professionals alike.
We believe that this book can be used as a textbook for advanced courses in computational science and software/systems engineering for senior undergraduate and graduate students. It can also serve as a valuable reference for computational scientists, computer scientists, industry professionals, software developers, and other researchers in the areas of computational science, numerical methods, computer science, high-performance computing, parallel/distributed computing, and software engineering.

OVERVIEW OF THE BOOK

The book is organized in three separate parts. Part I titled “Adaptive Applications in Science and Engineering” focuses on high-performance adaptive scientific applications and includes chapters that describe high-impact, real-world application scenarios. The goal of this part of the book is to emphasize the need for advanced computational engines as well as outline their requirements. Part II titled “Adaptive Computational Infrastructures” includes chapters describing popular and widely used adaptive computational infrastructures. Part III is titled “Dynamic Partitioning and Adaptive Runtime Management Frameworks” focuses on the more specific partitioning and runtime management schemes underlying these computational toolkits. The three parts are described in more detail below.

Part I consists of seven chapters. Chapter 2 presents the use of adaptive mesh refinement techniques in large-scale fusion simulations modeled using magnetohydrodynamics (MHD). The emphasis of this work is on understanding the large-scale macroscopic processes involved in the redistribution of mass inside a tokamak during pellet injection and to support experimentation using ITER. Chapter 3 introduces adaptive models and parallel computing engines for subsurface imaging such as hydraulic tomography. Chapter 4 proposes a new parallel imaging algorithm and its implementation in oil reservoir simulations. The algorithm is based on decomposing the observed seismic data into plane wave components that correlate to angles of incidence in the subsurface and the degree of lateral variability. Chapter 5 focuses on assessments of uncertainty in climate models and climate prediction. Chapter 6 focuses on high-fidelity computational fluid dynamics (CFD) models for hazardous airborne materials in urban environments. The rapid embedded boundary gridding method in AMR is proposed to support efficient adaptive operations for this application. Chapter 7 presents the parallel adaptive simulation of cardiac fluid dynamics using the immersed boundary method and an unstructured adaptive mesh refinement technique. Chapter 8 introduces quantum chromodynamics and presents a scalable implementation on the IBM BlueGene/L supercomputer. The work presented in this chapter was awarded the 2006 Gordon Bell Special Achievement Award.

Part II consists of six chapters. Chapter 9 presents the SCIJump problem solving environment (PSE), which builds on its successful predecessor SCIRun and is based on the DOE common component architecture (CCA) scientific component model.
SCIJump supports multiple component models under a metacomponent model. Chapter 10 describes the Uintah computational framework, which provides a set of parallel software components and libraries that facilitate the solution of partial differential equations (PDEs) on structured AMR (SAMR) grids. This framework uses an explicit representation of parallel computation and communication to enable integration of parallelism across multiple simulation methods. Chapter 11 focuses on the complexity of parallel adaptive finite element applications and describes the Sierra Framework, which supports a diverse set of finite element and finite volume engineering analysis codes. Chapter 12 presents the grid adaptive computational engine (GrACE), an object-oriented framework supporting the large-scale SAMR application, and providing support dynamic partitioning, scheduling, and automatic data migration. Over the years, GrACE has evolved into a widely used tool for supporting autonomic partitioning and runtime management of large-scale adaptive applications. Chapter 13 introduces the adaptive MPI model and presents an implementation using the Charm++ framework. An intelligent adaptive runtime system using migratable objects and various adaptive strategies is presented in this chapter. Chapter 14 presents the Seine framework for data/code coupling for large-scale coupled parallel scientific simulations. Seine provides the high-level abstraction as well as efficient runtime mechanisms to support MXN data redistributions required by such coupled applications.

Part III consists of eight chapters. Chapter 15 presents a hypergraph approach for dynamic partitioning and load balancing in scientific applications. Chapter 16 presents the PART framework and its mesh partitioning algorithms that can support scientific applications across geographically distributed systems. Chapter 17 presents a meshing partitioning framework, called variable partition inertia (VPI), for repartitioning adaptive unstructured meshes considering resource and application heterogeneity. Chapter 18 presents the Nature + Fable framework, a hybrid and flexible partitioning tool dedicated to structured grid hierarchies. Nature + Fable is shown to effectively cope with demanding, complex, and realistic SAMR applications. Chapter 19 proposes and implements a flexible mesh database based on a hierarchical domain decomposition to partition and manage evolving adaptive unstructured meshes. Chapter 20 presents a hybrid runtime management framework (HRMS) that provides a suite of partitioning and managing strategies. HRMS decomposes computational domain and selects an appropriate partitioner for each partition based on the partition’s local characteristics and requirements. Chapter 21 presents an autonomic programming framework PARM, which can dynamically self-configure the application execution environment to exploit the heterogeneity and the dynamism of the application execution states. Chapter 22 presents the DistDLB framework, which is equipped with hierarchical load balancing algorithms to support global balancing and local balancing phases. DistDLB is specifically targeted to SAMR simulations in cosmology.

Once again, the objective of this book is to investigate the state of the art in the design, architectures, and implementations of such advanced computational infrastructures and the applications they support. We do hope that it will lead to new insights into the underlying concepts and issues, current approaches and research
efforts, and outstanding challenges of the field and will inspire further research in this promising area.

ACKNOWLEDGMENTS

This book has been made possible due to the efforts and contributions of many individuals. First and foremost, we would like to acknowledge all the contributors for their tremendous efforts in putting together excellent chapters that are comprehensive, informative, and timely. We would like to thank the reviewers for their excellent comments and suggestions. We would also like to thank Professor Albert Zomaya for the opportunity to edit this book as part of the Wiley Book Series on Parallel and Distributed Computing and to Michael Christian and the rest of the team at John Wiley & Sons, Inc. for patiently helping us put this book together. Finally, we would like to acknowledge the support of our families and would like to dedicate this book to them.

Manish Parashar
Department of Electrical and Computer Engineering, Rutgers
The State University of New Jersey
Piscataway, NJ, USA

Xiaolin Li
Department of Computer Science
Oklahoma State University
Stillwater, OK, USA
 Contributors

Marsha Berger, Courant Institute, New York University, New York, NY, USA
Gyan Bhanot, Department of Molecular Biology and Biochemistry & Physics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
Erik G. Boman, Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA
Doruk Bozdağ, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
Xing Cai, Simula Research Laboratory, Lysaker, Norway; Department of Informatics, University of Oslo, Oslo, Norway
Umit V. Catalyurek, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
Kyle Chand, Lawrence Livermore National Laboratory, Livermore, CA, USA
Jian Chen, Department of Computer Science, Brown University, Providence, RI, USA
Fotini K. Chow, Civil and Environmental Engineering, University of California, Berkeley, CA, USA
Kostadin Damevski, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
Karen D. Devine, Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA
Ciprian Docan, Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
Harold C. Edwards, Sandia National Laboratories, Livermore, CA, USA
Boyce E. Griffith, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
James Guilkey, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
Salim Hariri, Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA
Todd Harman, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA

Robert Heaphy, Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA

Richard D. Hornung, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA

Gabriel Huerta, Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA

Charles S. Jackson, Institute for Geophysics, The University of Texas at Austin, Austin, TX, USA

Christopher R. Johnson, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Laxmikant V. Kale, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Ayla Khan, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Branko Kosovic, Lawrence Livermore National Laboratory, Livermore, CA, USA

Zhiling Lan, Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

Hans P. Langtangen, Simula Research Laboratory, Lysaker, Norway; Department of Informatics, University of Oslo, Oslo, Norway

Xiaolin Li, Department of Computer Science, Oklahoma State University, Stillwater, OK, USA

Yawei Li, Illinois Institute of Technology, Chicago, IL, USA

Justin Luitjens, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA

David M. McQueen, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Chuen-Fa Ni, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ, USA

Manish Parashar, Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

Steven G. Parker, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA

Charles S. Peskin, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Reynam C. Pestana, Instituto de Geociências, Universidade Federal da Bahia, Campus Universitário da Federação, Salvador, Bahia, Brazil

Lee A. Riesen, Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA
Ravi Samtaney, Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

Roustam K. Seif, Institute for Geophysics, The University of Texas at Austin, Austin, TX, USA

Mrinal K. Sen, Institute for Geophysics, The University of Texas at Austin, Austin, TX, USA

Seegyoung Seol, Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA

Mark S. Shephard, Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Johan Steensland, Advanced Software Research and Development, Sandia National Laboratories, Livermore, CA, USA

Paul L. Stoffa, Institute for Geophysics, University of Texas at Austin, Austin, TX, USA

Ashwin Swaminathan, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Valerie E. Taylor, Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA

Pavlos M. Vranas, Lawrence Livermore National Laboratory, Livermore, CA, USA

Chris Walshaw, Computing & Mathematical Sciences, University of Greenwich, London, UK

Andrew Wissink, ELORET Corporation, NASA Ames Research Center, Moffett Field, CA, USA

Bryan Worthen, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA

Tian-Chyi J. Yeh, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ, USA; Department of Resources Engineering, National ChengKung University, Tainan, Taiwan

Li Zhang, Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

Yeliang Zhang, Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA

Gengbin Zheng, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Junfeng Zhu, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ, USA
Manish Parashar is Professor of Electrical and Computer Engineering at Rutgers University and codirector of the NSF Center for Autonomic Computing. He is also the Associate Director of the Rutgers Center for Information Assurance (RUCIA), is affiliated with CAIP, WINLAB, CBIM, and IMCS at Rutgers, holds a joint research appointment with the Center for Subsurface Modeling, The University of Texas at Austin, and a visiting position at the e-Science Institute at Edinburgh, United Kingdom. He has been a visiting fellow at the Department of Computer Science and DOE ASCI/ASAP Center, California Institute of Technology, at the DOE ASCI/ASAP FLASH Center, University of Chicago, and at the Max-Planck Institute in Potsdam, Germany. His research is in the broad area of applied parallel and distributed computing and computational science. A key focus of his current research is on solving scientific and engineering problems on very large systems and the integration of physical and computational systems.

Manish received the IBM Faculty Award (2008), the Rutgers Board of Trustees Award for Excellence in Research (The Award) (2004–2005), the NSF CAREER Award (1999), TICAM (University of Texas at Austin) Distinguished Fellowship (1999–2001), Enrico Fermi Scholarship, Argonne National Laboratory (1996), is a senior member of IEEE/IEEE Computer Society, and a senior member of ACM. He is also the Vice Chair of the IEEE Computer Society Technical Committee on Scalable Computing (TCSC) and a member of the executive committee of the IEEE Computer Society Technical Committee on Parallel Processing (TCPP) and part of the IEEE Computer Society Distinguished Visitor Program (2004–2007). He is the cofounder of the IEEE International Conference on Autonomic Computing (ICAC), has served as general or program chair for over 30 international conferences/workshops, and is actively involved in the organization of several conferences and workshops. He also serves on various steering committees and journal editorial boards.

Manish has coauthored over 250 technical papers in international journals and conferences, has coauthored/edited over 20 books and proceedings, and has contributed to several others, all in the broad area of computational science and applied parallel and distributed computing.

Manish received a BE degree in Electronics and Telecommunications from Bombay University, India, and MS and PhD degrees in Computer Engineering from Syracuse University. For more information, please visit http://www.ece.rutgers.edu/~parashar/.
Xiaolin Li is an Assistant Professor and the director of the Scalable Software Systems Laboratory in the Computer Science Department at Oklahoma State University. His research has been sponsored by the National Science Foundation, the Department of Homeland Security, the Oklahoma Center for the Advancement of Science and Technology, AirSprite Technologies Inc., and OSU. He was a visiting scholar at UT Austin, a research staff at the Institute for Infocomm Research, and a research scholar at the National University of Singapore (NUS). His research interests include parallel and distributed systems, sensor networks, and network security. More information about his research can be found at http://s3lab.cs.okstate.edu/. He is on the executive committee of IEEE Technical Committee of Scalable Computing (TCSC) and is also the coordinator of Sensor Networks. He has been a TPC chair for several conferences and workshops and an associate editor for several journals. He has coauthored over 40 technical papers in international journals and conferences and has contributed to several books in parallel and distributed systems, networks, and security. He received the PhD in Computer Engineering from Rutgers University. He is a member of IEEE and ACM.