Increasing the Re-Use of IT equipment through RFID and tracking

Rich Martin

Joint Work Rich Howard, Wade Trappe
IT Equipment Recycling and Reclamation

• Much IT equipment is not re-used/reclaimed
 – Laptops, servers, monitors, switches, NAS storage
 – Recycled for materials (e.g. gold, copper), not reclaimed

• Example equipment still usable
 • Old laptops
 • 10/100 switches
 • Tube Monitors
 • Desktops (for ages 1-3)
 • Specialized Servers (print)
 • Firewalls
 • Wireless APs
Example of non-reclamation
Incentivizing used IT equipment recovery

- **Goal:** Give the owner a $ incentive to put used equipment in a secondary market
 - Analogy: bottle deposits -> recycled plastics -> composite decks

- **Approach:** Make the *reclamation cost* < *residual value*

- **Challenges:**
 - Residual value is low
 - Hard to place on secondary market
 - Reclamation cost is high
Low Residual Value

• Moore’s Law: processor speed doubles every 18 months

• Corollary: value of IT equipment halves every 18 months
 – Real data: This $2500 powerbook G4, 2003, today is $400.

• Rule of thumb: halves every year

• Can’t do much about this …
Secondary Markets for used IT equipment

• Current examples and limitations:
 – E-bay
 • Shipping, reputation, auctions
 – Rutgers surplus store
 • Pricing, inventory, payment
 – LCSR “junkyard”
 • Accessibility (only CS dept)

• Easy to use, secondary market for used IT equipment?
 – Not part of this talk
 – Examples:
 • Want 4 100-Mb/s switches, might pay $20
 • Want a large pizza, get rid of some old server
Reducing Reclamation costs

• Search costs higher than residual value
 – How long to find a piece of 5 year old equipment?
 – Takes several hours: not worth it.
 – Result: Buying new is much less time than finding the old!

• Track real-time position of all IT equipment
 – Instantaneous physical inventory
 – Remove search cost

• Many Mobile equipment scenarios
 – Laptops
 – Humans moving offices, leaving the organization
RFID + tracking to reduce location costs

- Low cost active RFID tags
 - Active beaconing
 - 6-year battery lifetime
 - < $10 @ small volumes, including the battery

- Room-level tracking
 - Can realize today

- Good enough for small IT equipment?
 - Hard drives, power supplies, cases.
 - $1-$2 tag?
 - Shelf-level accuracy?
Current Work: Next Generation Pipsqueak tag

- Rich Howard @ WINLAB

- Change the CPU
 - Lower power

- Roll-call protocol
 - No receive, TX only

- Single X-tal
 - Better sleep management
 - 1 Hz cycle time

- Reduce size 2X
 - Size of battery clip
Expected lifetime model

- MSP 430: Sleep power dominates lifetime.
- C8051:

![Graph showing expected lifetime model with beacon period in seconds (Sec) on the x-axis and years on the y-axis. Two lines represent MSP 430 and C8051, with MSP 430 showing a significant increase in years with beacon period, while C8051 remains relatively flat.]
Tracking Result

- Cancer Clinic @ Penn State
 - 80x100 ft

- Paper chart
 - Pipsqueak 2 tag
 - 1 second beacon interval

- Median accuracy 12 ft.

- Fixed costs of $2.50 sq/ft.
Conclusions and Future Work

• Improving Re-Use of IT equipment important part of Green Computing
 – Reducing the IT waste stream

• Efficient mechanisms to finding equipment
 – Can realize vision of instantaneous inventory snapshot in few years

• Actual residual values and reclamation potential of CS Dept.

• Matching current and future owners
 – Social, economic, market efficiency issues