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Abstract. The dynamism and space-time heterogeneity exhibited by structured
adaptive mesh refinement (SAMR) applications makes their scalable parallel im-
plementation a significant challenge. This paper investigates an adaptive hier-
archical multi-partitioner (AHMP) framework that dynamically applies multiple
partitioners to different regions of the domain, in a hierarchical manner, to match
the local requirements of these regions. Key components of the AHMP frame-
work include a segmentation-based clustering algorithm (SBC) for identifying
regions in the domain with relatively homogeneous partitioning requirements,
mechanisms for characterizing the partitioning requirements, and a runtime sys-
tem for selecting, configuring and applying the most appropriate partitioner to
each region. The AHMP framework has been implemented and experimentally
evaluated on up to 1280 processors of the IBM SP4 cluster at San Diego Super-
computer Center.

Keywords: Parallel Computing, Adaptive Mesh Refinement, Dynamic Load Bal-
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1 Introduction

Simulations of complex physical phenomena, modeled by systems of partial differential
equations (PDE), are playing an increasingly important role in science and engineer-
ing. Dynamic structured adaptive mesh refinement (SAMR) techniques [1] are emerg-
ing as attractive formulations of these simulations. Compared to numerical techniques
based on static uniform discretization, SAMR can yield highly advantageous ratios for
cost/accuracy by adaptively concentrating computationaleffort to appropriate regions
at runtime.

Parallel implementations of SAMR-based applications havethe potential to accu-
rately model complex physical phenomena and provide dramatic insights. However,
while there have been some large-scale implementations [4][6] [7] [8] [11], these im-
plementations are typically based on application-specificcustomizations and general
scalable implementations of SAMR applications continue topresent significant chal-
lenges. This is primarily due to the dynamism and space-timeheterogeneity exhibited
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by these applications. SAMR dynamism/heterogeneity has been traditionally addressed
using dynamic partitioning and load-balancing algorithms, such as the mechanisms pre-
sented in [6] [11], that partition and load-balance the domain when it changes. The
meta-partitioner approach proposed in [14] selects and configures partitioners at run-
time to match the application’s current requirements. However, due to the spatial hetero-
geneity of the SAMR domain, the computation/communicationrequirements can vary
significantly across the domain, and as a result, using single partitioner for the entire
domain can lead to decompositions that are locally inefficient. This is especially true
for large-scale simulations that run on over 1000 processors.

The objective of the research presented in this paper is to address this issue. Specif-
ically, we investigate an adaptive multi-partitioner framework that dynamically applies
multiple partitioners to different regions of the domain, in a hierarchical manner, to
match the local requirements of the regions. This research builds on our earlier research
on meta-partitioning [14] and adaptive hierarchical partitioning [10] to define an adap-
tive hierarchical multi-partitioner framework (AHMP). The experimental evaluation of
AHMP demonstrates the performance gains using AHMP on up to 1280 processors of
the IBM SP4 cluster at San Diego Supercomputer Center.

The rest of the paper is organized as follows. Section 2 presents the problem de-
scription. Section 3 presents the AHMP framework and the SBCclustering algorithm.
The experimental evaluation is presented in Section 4 . Section 5 reviews related work.
Section 6 presents a conclusion.

2 Problem Description

SAMR formulations for adaptive solutions to PDE systems track regions in the com-
putational domain with high solution errors that require additional resolution. SAMR
methods start with a base coarse grid with minimum acceptable resolution. As the so-
lution progresses, regions in the domain requiring additional resolution are tagged and
finer grids are overlaid on these tagged regions of the coarsegrid. Refinement pro-
ceeds recursively so that regions on the finer grid requiringmore resolution are similarly
tagged and refined. It results in a dynamic adaptive grid hierarchy [11].

Parallel implementations of SAMR typically partition the adaptive grid hierarchy
across available processors, and each processor operates on its local portions of this
domain in parallel. The overall performance of parallel SAMR applications is thus lim-
ited by the ability to partition the underlying grid hierarchies at runtime to expose all
inherent parallelism, minimize communication and synchronization overheads, and bal-
ance load. Communication overheads of parallel SAMR applications primarily consist
of four components: (1)Inter-level communications, defined between component grids
at different levels of the grid hierarchy; (2)Intra-level communications, required to up-
date the grid-elements along the boundaries of local portions of a distributed grid; (3)
Synchronization cost, which occurs when the load is not balanced; (4)Data migration
cost, which occurs between successive regridding and re-mapping steps.

The space-time heterogeneity of SAMR applications is illustrated in Figure 1 us-
ing the 3-D compressible turbulence simulation kernel solving the Richtmyer-Meshkov
(RM3D) instability [3]. The figure shows a selection of snapshots of the RM3D adap-
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Fig. 1.Spatial and Temporal Heterogeneity and Workload Dynamics for RM3D Simulation

tive grid hierarchy as well as a plot of its load dynamics at different regrid steps. Since
the grid hierarchy remains unchanged between two regrid steps, the workload dynamics
and other features are measured in terms of regrid steps. Theworkload in this figure rep-
resents the computational/storage requirement, which is computed based on the number
of grid points in the grid hierarchy. Application variablesare typically defined at these
grid points and are updated at each iteration of the simulation, and consequently, the
computational/storage requirements are proportional to the number of grid points. The
snapshots in this figure clearly demonstrate the dynamics and spatial and temporal het-
erogeneity of SAMR applications - different subregions in the computational domain
have different computational and communication requirements and regions of refine-
ment are created, deleted, relocated, and grow/shrink at runtime.

3 Adaptive Hierarchical Multi-Partitioner (AHMP) Framework

The operation of the AHMP framework is illustrated in Figure2. The input of AHMP
is the structure of the current grid hierarchy, which is represented as a list of regions
and defines the runtime state of the SAMR application. AHMP operation consists of
the following steps. First, a clustering algorithm is used to identify clique hierarchies.
Second, each clique is characterized and its partitioning requirements identified. Avail-
able resources are also partitioned into corresponding resource groups based on the
relative requirements of the cliques. Third, these requirements are used to select and
configure an appropriate partitioner for each clique. The partitioner is selected from
a partitioner repository using selection policies. Finally, each clique is partitioned and
mapped to processors in its corresponding resource group. The strategy is triggered
locally when the application state changes. State changes are determined using a load-
imbalance metric defined below. Partitioning proceeds hierarchically and incrementally.
The identification and isolation of cliques uses a segmentation-based clustering (SBC)
scheme. Partitioning schemes in the partitioner repository include Greedy Partition-
ing Algorithm (GPA), Level-based Partitioning Algorithm (LPA), bin-packing parti-
tioning algorithm (BPA), geometric multilevel + sequence partitioning (G-MISP+SP),
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andp-way binary dissection algorithm (pBD-ISP) [10] [14]. AHMPextends our pre-
vious work on Hierarchical Partitioning Algorithm (HPA) [10], which applies single
partitioner hierarchically, reducing global communication overheads and enabling in-
cremental repartitioning and rescheduling.

The load imbalance factor (LIF) metric is used as the criterion for triggering repar-
titioning and rescheduling within a local resource group, and is defined as follows:

LIFA =
maxAn

i=1
Ti − minAn

i=1
Ti∑An

i=1
Ti/An

whereAn is the total number of processors in resource group A, andTi is the estimated
relative execution time between two consecutive regrid steps for processori, which is
proportional to its load. The local load imbalance threshold is γA. WhenLIFA > γA,
the repartitioning is triggered inside the local group. Note that the imbalance factor can
be recursively calculated for larger groups as well.

3.1 Clustering Algorithm for Clique Identification

The objective of clustering is to identify well-structuredsubregions in the SAMR grid
hierarchy, called cliques. A clique is a quasi-homogeneouscomputational sub-domain
with relatively homogeneous partitioning requirements.

This section presents the segmentation-based clustering (SBC) algorithm, which is
based on space-filling curves (SFC) [12]. The algorithm is motivated by the locality-
preserving property of SFCs and the localized nature of physical features in SAMR
applications. Typical SAMR applications exhibit localized features and result in local-
ized refinements. Moveover, refinement levels and the resulting adaptive grid hierarchy
reflect the application runtime state. SBC hence attempts tocluster subregions with



similar refinement levels. SBC defines the load density factor (LDF) as follows:

LDF (rlev) =
associated load on the subdomain
volume of the subdomain atrlev

whererlev denotes the refinement level and the volume is for the subregion of interest.
The SBC algorithm first smooths out subregions that are smaller than a predefined

threshold, which is referred to as the template size (TS). TS is determined by the stencil
size of the finite difference method and the granularity constraint that defines a certain
computation communication ratio. SBC then follows the SFC index to extract subre-
gions (defined by rectangular bounding boxes) from the subregion list until the size of
the accumulated subregion set is over the template size. It calculates the load density
for this set of subregions and computes a histogram of its load density. SBC contin-
ues to scan through the entire subregion list, and repeats the above process, calculating
the load density and computing histograms. Based on the histogram of the load den-
sity obtained, it then finds a clustering thresholdθ. A simple intermeans thresholding
algorithm [5] is used. Using the threshold obtained, subregions are further partitioned
into several clique regions. A hierarchical structure of clique regions is created by re-
cursively calling the SBC algorithm for finer refinements.

Note that this algorithm has similarities to the point clustering algorithms proposed
by Berger and Regoutsos in [2]. However, the SBC scheme differs from this scheme in
two aspects. Unlike the Berger-Regoutsos scheme, which creates fine grained cluster,
the SBC scheme targets coarser granularity cliques. In addition, SBC also takes advan-
tage of the locality-preserving properties of SFCs to potentially reduce data movement
costs between consecutive repartitioning phases.
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Fig. 3.Load Density Distribution and Histogram

Figure 3 shows the load density distribution and histogram for an SFC-indexed sub-
domain list. For this example, the SBC algorithm creates three cliques defined by the
regions separated by the vertical lines in the figure on the left. The template size in this
example is two boxes on the base level. The right figure shows ahistogram of the load
density. For this example, the threshold is identified in between 1 and 9 using the in-
termeans thresholding algorithm. While there are many more sophisticated approaches
for identifying good thresholds for segmentation and edge detection in image process-
ing [5], this approach is sufficient for our purpose. Note that we assume a predefined



minimum size for a clique region. In this example, the subregion indexed 14 does not
form a clique as its size is less then the template size. It is clustered with another subre-
gion in its proximity.

3.2 Clique Characterization and Partitioner Selection

The characterization of a clique is based on its computationand communication require-
ments, and its refinement homogeneity is defined in Section 4.1. Using the characteriza-
tion of applications and partitioners presented in [14], partitioner-selection policies are
defined to select the partitioners. The overall goal of thesepolicies is to obtain better
load balance for less refined cliques, and to reduce communication and synchroniza-
tion costs for highly refined cliques. For example, the policy dictates that the GPA and
G-MISP+SP partitioning algorithms be used for cliques withrefinement homogeneity
below some threshold and partitioning algorithms LPA and pBD-ISP be used for cliques
with refinement homogeneity greater than the threshold.

4 Experimental Evaluation

4.1 Evaluating the Effectiveness of the SBC Clustering Algorithm

To aid the evaluation of the effectiveness of the SBC clustering scheme, a clustering
quality metric is defined below. The static quality of a clique is measured in terms of
its refinement homogeneity and the efficiency of the clustering algorithm. The dynamic
quality of the clique hierarchy is measured in terms of its communication costs (intra-
level, inter-level, and data migration).

(1) Refinement Homogeneity: This measures the quality of the structure of a clique.
Let |Rtotal

i (l)| denote the total size of a subregion or a clique at refinement level l,
which is composed ofRref

i (l), the size of refined regions, andRunref
i (l), the size

of un-refined regions at refinement levell. Refinement homogeneity is recursively
defined between two refinement levels as follows:

Hi(l) =
|Rref

i (l)|

|Rtotal
i (l)|

, and Hall(l) =
1

n

n∑

i=1

Hi(l), if |Rref
i (l)| 6= 0

wheren is the total number of subregions that have refinement levell+1. The goal
of AHMP is to maximize the refinement homogeneity of a clique as partitioners
work well on relatively homogeneous regions.

(2) Communication Cost: This measures the communication overheads of a clique
and includes inter-level communication, intra-level communication, synchroniza-
tion cost, and data migration cost as described in Section 2.The goal of AHMP is
to minimize the communication overheads of a clique.

(3) Clustering Cost: This measures the efficiency of the clustering algorithm itself.
As mentioned above, SAMR applications require regular re-partitioning and re-
balancing, and as a result clustering cost become important. The goal of AHMP is
to minimize the clustering cost.



Partitioning algorithms typically work well on highly homogeneous grid structures.
Hence, it is important to have a quantitative measure to specify homogeneity. Intu-
itively, the refinement homogeneity metric attempts to isolate refined cliques that are
potentially heterogeneous. In contrast, unrefined cliquesare homogeneous at their finest
refinement level.

The effectiveness of SBC-based clustering is evaluated using the metrics defined
above. The evaluation compares the refinement homogeneity of 6 SAMR application
kernels with and without clustering. These application kernels span multiple domains,
including computational fluid dynamics (compressible turbulence: RM2D and RM3D,
supersonic flows: ENO2D), oil reservoir simulations (oil-water flow: BL2D and BL3D),
and the transport equation (TP2D). The detailed descriptions and characterizations of
these applications are presented in [14].

Table 1.Average Refinement HomogeneityH(l) for 6 SAMR Applications

Application Level0 Level1 Level2 Level3

TP2D 0.067 0.498 0.598 0.6680
RM2D 0.220 0.680 0.830 0.901
RM3D 0.427 0.618
ENO2D 0.137 0.597 0.649 0.761
BL3D 0.044 0.267
BL2D 0.020 0.438 0.406 0.316

The average refinement homogeneity of 6 SAMR applications without clustering is
presented in Table 1. The table shows that the refinement homogeneityH(l) increases
as the refinement levell increases. Typical ranges ofH(l) are:H(0) ∈ [0.02, 0.22],
H(1) ∈ [0.26, 0.68], H(2) ∈ [0.59, 0.83] and H(3) ∈ [0.66, 0.9]. Several outliers
require some explanation. In case of the BL2D application, averageH(2) = 0.4. How-
ever, the individual values ofH(2) are in the range[0.6, 0.9] with many scattered zeros.
Since the refinement homogeneity on level 3 and above is typically over 0.6 and re-
fined subregions on deeper refinement levels tend to be more scattered, the clustering
schemes will focus efforts on clustering level 0, 1 and 2. Furthermore, based on these
statistics, we set the thresholdθ for switching between different lower-level partition-
ers as follows:θ0 = 0.4, θ1 = 0.6, andθ2 = 0.8, where the subscripts denote the
refinement level.

The effects of clustering using SBC for the 6 SAMR applications are presented in
Table 2. In the table, the gain is defined as the ratio of the improved homogeneity over
the original homogeneity at each level. The gains for RM3D and RM2D applications
are smaller because these applications already exhibit high refinement homogeneity.
These results demonstrate the effectiveness of the clustering scheme.

4.2 Performance Evaluation

This section presents an evaluation of the AHMP scheme usingthe clustering quality
metrics defined above.



Table 2.Homogeneity Improvements using SBC

Application Level0 Level1 Gain on Level0Gain on Level1

TP2D 0.565 0.989 8.433 1.986
RM2D 0.671 0.996 3.050 1.465
RM3D 0.802 0.980 1.878 1.586
ENO2D 0.851 0.995 6.212 1.667
BL3D 0.450 0.583 10.227 2.184
BL2D 0.563 0.794 28.150 1.813

Clustering Time for SBC

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

rm3d rm2d bl3d tp2d bl2d eno2d

SAMR Applications

T
im

e 
(m

ic
ro

se
co

n
d

)

Fig. 4.Clustering Costs for the 6 SAMR Application Kernels

Clustering Costs:The cost of the SBC clustering algorithm is experimentally eval-
uated using the 6 different SAMR application kernels on a Beowulf cluster (Frea) at
Rutgers University. The cluster consists of 64 processors and each processor has a 1.7
GHz Pentium IV CPU. The costs are plotted in Figure 4. As seen in this figure, the over-
all clustering time on average is less than 0.01 second. Notethat the computational time
between successive repartitioning phases is typically in the order of 10’s of seconds,
and as a result, the clustering costs are not significant.

Overall Performance: The overall performance benefit of the AHMP scheme is
evaluated on DataStar, the IBM SP4 cluster at San Diego Supercomputer Center. DataS-
tar has 176 (8-way) P655+ nodes (SP4). Each node has 8 (1.5 GHz) processors, 16 GB
memory, and CPU peak performance is 6.0 GFlops. The evaluation uses the RM3D ap-
plication kernel with a base grid of size 256x64x64, up to 3 refinement levels, and 1000
base level time steps. The number of processors used was between 64 and 1280.

The overall execution time is plotted in Figure 5. The figure plots execution times for
GPA, LPA and AHMP. The plot shows that SBC+AHMP delivers the best performance.
Compared to GPA, the performance improvement is between 30%to 42%. These im-
provements can be attributed to the following factors: (1) AHMP takes advantage of the
strength of different partitioning schemes matching them to the requirements of each
clique; (2) the SBC scheme creates well-structured cliques, which reduces the commu-
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nication between cliques; (3) AHMP enables incremental repartitioning/redistribution
and concurrent communication between resource groups, which extends the advantages
of HPA [10].

5 Related Work

Traditional parallel SAMR implementations presented in [6] [11] use dynamic parti-
tioning and load-balancing algorithms. These approaches view the system as a flat pool
of processors. They are based on global knowledge of the state of the adaptive grid
hierarchy, and partition the grid hierarchy across the set of processors. Global syn-
chronization and communication is required to maintain this global knowledge and can
lead to significant overheads on large systems. Furthermore, these approaches do not
exploit the hierarchical nature of the grid structure and the distribution of communica-
tions and synchronization in this structure. Dynamic load balancing schemes for dis-
tributed SAMR applications are proposed in [9], which consist of two phases: global
load balancing and local load balancing. However, simplistic partitioning schemes are
used without explicitly addressing the spatial and temporal heterogeneity exhibited by
SAMR applications. The characterization of SAMR applications presented in [14] was
based on the entire physical domain. The research in this paper goes one step fur-
ther by considering the characteristics of individual subregions. The concept of nat-
ural regions was proposed in [13]. Two kinds of natural regions were defined: unre-
fined/homogeneous and refined/complex. The framework proposed in the paper then
used a bi-level domain-based (BLED) partitioning scheme topartition the refined sub-
regions. This approach is one of the first attempts to apply multiple partitioners concur-
rently to the SAMR domain. However, this approach restrictsitself to applying only two
partitioning schemes, one to the refined region and the otherto the unrefined region.



6 Conclusion

This paper presented the adaptive hierarchical multi-partitioner (AHMP) scheme to ad-
dress space-time heterogeneity in dynamic SAMR applications. The AHMP scheme ap-
plies multiple partitioners to different regions of the domain, in a hierarchical manner,
to match the local requirements of the regions. A segmentation-based clustering algo-
rithm (SBC) was used to identify clique regions with relatively homogeneous partition-
ing requirements in the adaptive computational domain. Thepartitioning requirements
of these clique regions are then characterized, and the mostappropriate partitioner for
each clique is selected. The AHMP framework and its components have been imple-
mented and experimentally evaluated using 6 SAMR application kernels. The evalua-
tions demonstrated both, the effectiveness of the clustering as well as the performance
improvements using AHMP.
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