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Abstract. The dynamism and space-time heterogeneity exhibited by structured
adaptive mesh refinement (SAMR) applications makes their scalalakgbam-
plementation a significant challenge. This paper investigates an adafive h
archical multi-partitioner (AHMP) framework that dynamically applies mustip
partitioners to different regions of the domain, in a hierarchical matoenatch

the local requirements of these regions. Key components of the AH&MPRefr
work include a segmentation-based clustering algorithm (SBC) for idergify
regions in the domain with relatively homogeneous partitioning requirements
mechanisms for characterizing the partitioning requirements, and a rigtisa
tem for selecting, configuring and applying the most appropriate partitione
each region. The AHMP framework has been implemented and expeeiltye
evaluated on up to 1280 processors of the IBM SP4 cluster at San Diggo-S
computer Center.
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1 Introduction

Simulations of complex physical phenomena, modeled besysof partial differential
equations (PDE), are playing an increasingly importarg inlscience and engineer-
ing. Dynamic structured adaptive mesh refinement (SAMR)riEpies [1] are emerg-
ing as attractive formulations of these simulations. Camgao numerical techniques
based on static uniform discretization, SAMR can yield higtdvantageous ratios for
cost/accuracy by adaptively concentrating computatieffart to appropriate regions
at runtime.

Parallel implementations of SAMR-based applications Haeepotential to accu-
rately model complex physical phenomena and provide dianraights. However,
while there have been some large-scale implementatiori§]41] [8] [11], these im-
plementations are typically based on application-specifistomizations and general
scalable implementations of SAMR applications continu@resent significant chal-
lenges. This is primarily due to the dynamism and space-tiaterogeneity exhibited
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by these applications. SAMR dynamism/heterogeneity has baditionally addressed
using dynamic partitioning and load-balancing algorithsugh as the mechanisms pre-
sented in [6] [11], that partition and load-balance the donwvehen it changes. The
meta-partitioner approach proposed in [14] selects anfiggmes partitioners at run-
time to match the application’s current requirements. Hexelue to the spatial hetero-
geneity of the SAMR domain, the computation/communicat@guirements can vary
significantly across the domain, and as a result, using esipagititioner for the entire
domain can lead to decompositions that are locally inefiici€his is especially true
for large-scale simulations that run on over 1000 processor

The objective of the research presented in this paper isdead this issue. Specif-
ically, we investigate an adaptive multi-partitioner framwork that dynamically applies
multiple partitioners to different regions of the domain,d hierarchical manner, to
match the local requirements of the regions. This researittidon our earlier research
on meta-partitioning [14] and adaptive hierarchical paming [10] to define an adap-
tive hierarchical multi-partitioner framework (AHMP). €texperimental evaluation of
AHMP demonstrates the performance gains using AHMP on u28®0 processors of
the IBM SP4 cluster at San Diego Supercomputer Center.

The rest of the paper is organized as follows. Section 2 pteshe problem de-
scription. Section 3 presents the AHMP framework and the SB&tering algorithm.
The experimental evaluation is presented in Section 4 i@ebtreviews related work.
Section 6 presents a conclusion.

2 Problem Description

SAMR formulations for adaptive solutions to PDE systemsknaegions in the com-
putational domain with high solution errors that requireliidnal resolution. SAMR
methods start with a base coarse grid with minimum acceptasiolution. As the so-
lution progresses, regions in the domain requiring additioesolution are tagged and
finer grids are overlaid on these tagged regions of the capide Refinement pro-
ceeds recursively so that regions on the finer grid requiringe resolution are similarly
tagged and refined. It results in a dynamic adaptive gricahiéry [11].

Parallel implementations of SAMR typically partition thdagptive grid hierarchy
across available processors, and each processor operatisslacal portions of this
domain in parallel. The overall performance of parallel SRMlpplications is thus lim-
ited by the ability to partition the underlying grid hieraies at runtime to expose all
inherent parallelism, minimize communication and synairation overheads, and bal-
ance load. Communication overheads of parallel SAMR agptios primarily consist
of four components: (Unter-level communicationsliefined between component grids
at different levels of the grid hierarchy; (Bjtra-level communicationsequired to up-
date the grid-elements along the boundaries of local pwstaf a distributed grid; (3)
Synchronization costvhich occurs when the load is not balanced;4)Ya migration
cost which occurs between successive regridding and re-mgbéps.

The space-time heterogeneity of SAMR applications is tithted in Figure 1 us-
ing the 3-D compressible turbulence simulation kerneligglthe Richtmyer-Meshkov
(RM3D) instability [3]. The figure shows a selection of srapts of the RM3D adap-
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Fig. 1. Spatial and Temporal Heterogeneity and Workload Dynamics for RMg&iulation

tive grid hierarchy as well as a plot of its load dynamics #fedent regrid steps. Since
the grid hierarchy remains unchanged between two regnis stee workload dynamics
and other features are measured in terms of regrid stepsvditidoad in this figure rep-
resents the computational/storage requirement, whiabnigpated based on the number
of grid points in the grid hierarchy. Application variablae typically defined at these
grid points and are updated at each iteration of the sinmlaind consequently, the
computational/storage requirements are proportiondléantimber of grid points. The
shapshots in this figure clearly demonstrate the dynamigspatial and temporal het-
erogeneity of SAMR applications - different subregionstia tomputational domain
have different computational and communication requirgsiand regions of refine-
ment are created, deleted, relocated, and grow/shrinknéibre.

3 Adaptive Hierarchical Multi-Partitioner (AHMP) Framework

The operation of the AHMP framework is illustrated in Fig@.€eThe input of AHMP
is the structure of the current grid hierarchy, which is esgnted as a list of regions
and defines the runtime state of the SAMR application. AHMBErafion consists of
the following steps. First, a clustering algorithm is useddentify clique hierarchies.
Second, each clique is characterized and its partitioréggirements identified. Avail-
able resources are also partitioned into correspondingures groups based on the
relative requirements of the cliques. Third, these requénts are used to select and
configure an appropriate partitioner for each clique. Theitgaer is selected from
a partitioner repository using selection policies. Fipatlach clique is partitioned and
mapped to processors in its corresponding resource grdup.sirategy is triggered
locally when the application state changes. State changedetermined using a load-
imbalance metric defined below. Partitioning proceedsan@rically and incrementally.
The identification and isolation of cliques uses a segmiemidtased clustering (SBC)
scheme. Partitioning schemes in the partitioner repgsitteiude Greedy Partition-
ing Algorithm (GPA), Level-based Partitioning AlgorithnhBA), bin-packing parti-
tioning algorithm (BPA), geometric multilevel + sequenaetjiioning (G-MISP+SP),
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Fig. 2. Flowchart for the AHMP Framework

andp-way binary dissection algorithm (pBD-ISP) [10] [14]. AHM#Xtends our pre-
vious work on Hierarchical Partitioning Algorithm (HPA) (], which applies single
partitioner hierarchically, reducing global communioatioverheads and enabling in-
cremental repartitioning and rescheduling.

The load imbalance factor (LIF) metric is used as the cotefor triggering repar-
titioning and rescheduling within a local resource group & defined as follows:

An inAdn T
max; " T; — min; ™ T;
An
221 Ti/An

whereA,, is the total number of processors in resource group A/anslthe estimated
relative execution time between two consecutive regrigssfer processot, which is
proportional to its load. The local load imbalance thredhlish . WhenLIF4 > 74,
the repartitioning is triggered inside the local group. &titat the imbalance factor can
be recursively calculated for larger groups as well.

LIFy =

3.1 Clustering Algorithm for Clique Identification

The objective of clustering is to identify well-structuredbregions in the SAMR grid
hierarchy, called cliques. A clique is a quasi-homogenemusputational sub-domain
with relatively homogeneous partitioning requirements.

This section presents the segmentation-based clust&Bg)(algorithm, which is
based on space-filling curves (SFC) [12]. The algorithm igivated by the locality-
preserving property of SFCs and the localized nature of iphly$eatures in SAMR
applications. Typical SAMR applications exhibit localizfeatures and result in local-
ized refinements. Moveover, refinement levels and the iegudtiaptive grid hierarchy
reflect the application runtime state. SBC hence attemptduster subregions with



similar refinement levels. SBC defines the load density fatdF) as follows:

associated load on the subdomain
volume of the subdomain atev

whererlev denotes the refinement level and the volume is for the sutmegjiinterest.

The SBC algorithm first smooths out subregions that are smian a predefined
threshold, which is referred to as the template sizg)( 7'S is determined by the stencil
size of the finite difference method and the granularity t@amnst that defines a certain
computation communication ratio. SBC then follows the Skéek to extract subre-
gions (defined by rectangular bounding boxes) from the gidundist until the size of
the accumulated subregion set is over the template sizaldtlates the load density
for this set of subregions and computes a histogram of itd &Ensity. SBC contin-
ues to scan through the entire subregion list, and repeatsibve process, calculating
the load density and computing histograms. Based on thegnan of the load den-
sity obtained, it then finds a clustering thresh8ldA simple intermeans thresholding
algorithm [5] is used. Using the threshold obtained, sulbregare further partitioned
into several clique regions. A hierarchical structure @duwé regions is created by re-
cursively calling the SBC algorithm for finer refinements.

Note that this algorithm has similarities to the point chustg algorithms proposed
by Berger and Regoutsos in [2]. However, the SBC schemeslififem this scheme in
two aspects. Unlike the Berger-Regoutsos scheme, whictasdine grained cluster,
the SBC scheme targets coarser granularity cliques. IniaddSBC also takes advan-
tage of the locality-preserving properties of SFCs to pitiy reduce data movement
costs between consecutive repartitioning phases.
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Fig. 3. Load Density Distribution and Histogram

Figure 3 shows the load density distribution and histogranah SFC-indexed sub-
domain list. For this example, the SBC algorithm createsetaliques defined by the
regions separated by the vertical lines in the figure on theTlae template size in this
example is two boxes on the base level. The right figure shdvistagram of the load
density. For this example, the threshold is identified indeein 1 and 9 using the in-
termeans thresholding algorithm. While there are many maphisticated approaches
for identifying good thresholds for segmentation and edgfection in image process-
ing [5], this approach is sufficient for our purpose. Notet thha assume a predefined



minimum size for a clique region. In this example, the sulmegndexed 14 does not
form a clique as its size is less then the template size. lusgered with another subre-
gion in its proximity.

3.2 Cligue Characterization and Partitioner Selection

The characterization of a clique is based on its computatimhcommunication require-
ments, and its refinement homogeneity is defined in Sectlhriéing the characteriza-
tion of applications and partitioners presented in [14itibaner-selection policies are
defined to select the partitioners. The overall goal of thEsiies is to obtain better
load balance for less refined cliques, and to reduce commtimicand synchroniza-
tion costs for highly refined cliques. For example, the potictates that the GPA and
G-MISP+SP partitioning algorithms be used for cliques wéfinement homogeneity
below some threshold and partitioning algorithms LPA an®dBP be used for cliques
with refinement homogeneity greater than the threshold.

4 Experimental Evaluation

4.1 Evaluating the Effectiveness of the SBC Clustering Algithm

To aid the evaluation of the effectiveness of the SBC cliuggescheme, a clustering
quality metric is defined below. The static quality of a ckgis measured in terms of
its refinement homogeneity and the efficiency of the clustealgorithm. The dynamic
quality of the clique hierarchy is measured in terms of itsiocaunication costs (intra-
level, inter-level, and data migration).

(1) Refinement Homogeneity This measures the quality of the structure of a clique.
Let |Ri°'al(1)| denote the total size of a subregion or a clique at refineneset1,
which is composed o “/ (1), the size of refined regions, arit}""*/ (1), the size
of un-refined regions at refinement leveRefinement homogeneity is recursively
defined between two refinement levels as follows:

B = S0 1R 0] 40
|Rtotal ()]’ @ n o '

i=1

H;(l)

wheren is the total number of subregions that have refinement levél The goal
of AHMP is to maximize the refinement homogeneity of a cliggepartitioners
work well on relatively homogeneous regions.

(2) Communication Cost This measures the communication overheads of a clique
and includes inter-level communication, intra-level coamigation, synchroniza-
tion cost, and data migration cost as described in Sectidh@ goal of AHMP is
to minimize the communication overheads of a clique.

(3) Clustering Cost This measures the efficiency of the clustering algorithselft
As mentioned above, SAMR applications require regularaxHmoning and re-
balancing, and as a result clustering cost become impoitaetgoal of AHMP is
to minimize the clustering cost.



Partitioning algorithms typically work well on highly horgeneous grid structures.
Hence, it is important to have a quantitative measure toigpeomogeneity. Intu-
itively, the refinement homogeneity metric attempts todtmlrefined cliques that are
potentially heterogeneous. In contrast, unrefined cliguefiomogeneous at their finest
refinement level.

The effectiveness of SBC-based clustering is evaluatetyubie metrics defined
above. The evaluation compares the refinement homogerfe®tys&MR application
kernels with and without clustering. These applicatiomkds span multiple domains,
including computational fluid dynamics (compressible tlebce: RM2D and RM3D,
supersonic flows: ENO2D), oil reservoir simulations (ogter flow: BL2D and BL3D),
and the transport equation (TP2D). The detailed descriptand characterizations of
these applications are presented in [14].

Table 1. Average Refinement Homogeneit§(!) for 6 SAMR Applications

[Application|Level(LevellLevel2Leveld

TP2D 0.067 |0.498 |0.598 |0.6680
RM2D 0.220 |0.680 (0.830 [0.901
RM3D 0.427|0.618
ENO2D |0.137|0.597 |0.649 |0.761
BL3D 0.044 |0.267
BL2D 0.020 |0.438 |0.406 |0.316

The average refinement homogeneity of 6 SAMR applicatiotisoni clustering is
presented in Table 1. The table shows that the refinement demedty H (1) increases
as the refinement levélincreases. Typical ranges &f(l) are: H(0) € [0.02,0.22],
H(1) € [0.26,0.68], H(2) € [0.59,0.83] and H(3) € [0.66,0.9]. Several outliers
require some explanation. In case of the BL2D applicativarageH (2) = 0.4. How-
ever, the individual values df (2) are in the rang@.6, 0.9] with many scattered zeros.
Since the refinement homogeneity on level 3 and above isdljpiover 0.6 and re-
fined subregions on deeper refinement levels tend to be mateeisx, the clustering
schemes will focus efforts on clustering level 0, 1 and 2t@mmore, based on these
statistics, we set the threshador switching between different lower-level partition-
ers as followsf, = 0.4, #; = 0.6, andf, = 0.8, where the subscripts denote the
refinement level.

The effects of clustering using SBC for the 6 SAMR applicasi@are presented in
Table 2. In the table, the gain is defined as the ratio of thedwgl homogeneity over
the original homogeneity at each level. The gains for RM3D BRM2D applications
are smaller because these applications already exhiliit feiffinement homogeneity.
These results demonstrate the effectiveness of the dhgtsrheme.

4.2 Performance Evaluation

This section presents an evaluation of the AHMP scheme ukmglustering quality
metrics defined above.



Table 2. Homogeneity Improvements using SBC

[Application/LeveldLevel1[Gain on Level@Gain on Levell

TP2D 0.565 |0.989 (8.433 1.986
RM2D 0.671|0.996 |3.050 1.465
RM3D 0.802 |0.980 |1.878 1.586
ENO2D |0.851 |0.995 [6.212 1.667
BL3D 0.450 |0.583 |10.227 2.184
BL2D 0.563|0.794 |28.150 1.813
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Fig. 4. Clustering Costs for the 6 SAMR Application Kernels

Clustering Costs: The cost of the SBC clustering algorithm is experimentaligie
uated using the 6 different SAMR application kernels on aviadbcluster (Frea) at
Rutgers University. The cluster consists of 64 processwdseach processor has a 1.7
GHz Pentium IV CPU. The costs are plotted in Figure 4. As seémis figure, the over-
all clustering time on average is less than 0.01 second. thate¢he computational time
between successive repartitioning phases is typicallyiénarder of 10’s of seconds,
and as a result, the clustering costs are not significant.

Overall Performance: The overall performance benefit of the AHMP scheme is
evaluated on DataStar, the IBM SP4 cluster at San Diego Sopguter Center. DataS-
tar has 176 (8-way) P655+ nodes (SP4). Each node has 8 (1.ppdtessors, 16 GB
memory, and CPU peak performance is 6.0 GFlops. The evatuases the RM3D ap-
plication kernel with a base grid of size 256x64x64, up tofthement levels, and 1000
base level time steps. The number of processors used wasdyet and 1280.

The overall execution time is plotted in Figure 5. The figumgexecution times for
GPA, LPA and AHMP. The plot shows that SBC+AHMP delivers tlestiperformance.
Compared to GPA, the performance improvement is betweent80%2%. These im-
provements can be attributed to the following factors: (HMP takes advantage of the
strength of different partitioning schemes matching therthe requirements of each
clique; (2) the SBC scheme creates well-structured cligwb&h reduces the commu-
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nication between cliques; (3) AHMP enables incrementahrigoning/redistribution
and concurrent communication between resource groupshvwetitends the advantages
of HPA [10].

5 Related Work

Traditional parallel SAMR implementations presented ih[Bl] use dynamic parti-
tioning and load-balancing algorithms. These approactessthe system as a flat pool
of processors. They are based on global knowledge of the efahe adaptive grid
hierarchy, and partition the grid hierarchy across the $girocessors. Global syn-
chronization and communication is required to maintaia giobal knowledge and can
lead to significant overheads on large systems. Furthetrtiuese approaches do not
exploit the hierarchical nature of the grid structure areldfstribution of communica-
tions and synchronization in this structure. Dynamic loathbcing schemes for dis-
tributed SAMR applications are proposed in [9], which cehsif two phases: global
load balancing and local load balancing. However, simipligartitioning schemes are
used without explicitly addressing the spatial and temigoeterogeneity exhibited by
SAMR applications. The characterization of SAMR applicas presented in [14] was
based on the entire physical domain. The research in thierpgpes one step fur-
ther by considering the characteristics of individual sgfimns. The concept of nat-
ural regions was proposed in [13]. Two kinds of natural regiwvere defined: unre-
fined/homogeneous and refined/complex. The framework gexbin the paper then
used a bi-level domain-based (BLED) partitioning schemgataition the refined sub-
regions. This approach is one of the first attempts to applipheipartitioners concur-
rently to the SAMR domain. However, this approach restitstdf to applying only two
partitioning schemes, one to the refined region and the tbhtbe unrefined region.



6 Conclusion

This paper presented the adaptive hierarchical multitjparer (AHMP) scheme to ad-

dress space-time heterogeneity in dynamic SAMR applioatibhe AHMP scheme ap-
plies multiple partitioners to different regions of the daim in a hierarchical manner,
to match the local requirements of the regions. A segmemidtased clustering algo-
rithm (SBC) was used to identify clique regions with relativhomogeneous partition-
ing requirements in the adaptive computational domain.gdrétioning requirements

of these clique regions are then characterized, and the appsbpriate partitioner for

each clique is selected. The AHMP framework and its compisneave been imple-

mented and experimentally evaluated using 6 SAMR apptindternels. The evalua-

tions demonstrated both, the effectiveness of the clugexs well as the performance
improvements using AHMP.
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