
Design and Implementatio
Content-based Notifica

WS-Notifica
Andres Quiroz and Manis

TASSL, Department of Electrical and Computer
94 Brett Road Piscataway
{aquirozh, parashar}@caip

Abstract— We describe an implementation based on the WS-
Notification (WSN) specification for Publish/Subscribe commu-
nication which provides a distributed, content-based notification
service. The implementation is based on a distributed hashtable
(DHT) built on a structured overlay of peer nodes. The entire
system acts as a notification broker, so that notification producers
and consumers that make use of the network can achieve loosely-
coupled communication with a decentralized, scalable service.
We develop and evaluate self-optimizing behavior built to reduce
notification traffic within the network.

I. INTRODUCTION

Web services have emerged as one of the key enabling
technologies for Grid systems, providing platform-independent
interactions between distributed applications and resources.
The WS-Notification (WSN) specification [1] is a set of web
service standards that define protocols to realize the pub-
lish/subscribe communication pattern. WSN was developed
within the context of the WS-Resource Framework (WSRF),
which describes how to implement OGSA capabilities using
Web services [2]. Thus, it is expected that Grid applications
will adopt the WSN protocols for their communication infras-
tructure.

To date, however, there have been few implementations
of the WSN specifications, as it is still an emerging stan-
dard. Most of the existing implementations are bindings to
specific languages that provide the basic functionality for
WSN objects and message exchanges, and include API’s that
developers can extend for specific applications. For example,
Apache’s Pubscribe [3] is such an implementation for Java,
while WSRF.NET from the University of Virginia’s Grid
Computing Group [4] implements the standard for Microsoft’s
development platform. However, these implementations are
purposefully generic, and do not address some of the open
issues not regulated by the standard, such as mechanisms for
the location of producers and/or consumers, and the efficient
and scalable management of subscriptions and routing of
notifications. While it is clearly evident why the standards

0The research presented in this paper is supported in part by National
Science Foundation via grants numbers ACI 9984357, EIA 0103674, EIA
0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS 0430826, and
by Department of Energy via the grant number DE-FG02-06ER54857.

cannot
should
to war
mechan

In fa
in WS
(WSBr
mediat
that is
be a w
and co
Howev
how th
and ar
Further
such as
challen

This
broker
dissem
ronmen
on a d
conten
nicatio
system
its imp
dlewar
of our
reducin
These
notifica
the eff

The
present
and ide
lar to G
design
implem
evaluat
related
and dir

2071-4244-0344-8/06/$20.00  2006 IEEE
n of a Distributed
tion Broker for
tion

h Parashar
Engineering, Rutgers University

, NJ 08854
.rutgers.edu

seek to regulate these application dependent issues, it
also be noted that these issues are common enough

rant the implementation of services that provide these
isms for application development.
ct, the means for providing such services is anticipated
N by the definition of the WS-BrokeredNotification
N) specification. A notification broker is a service that
es interactions between producers and consumers, and
expected to relieve them of specific tasks. A broker may
ell-known rendezvous point through which producers
nsumers can find each other and exchange messages.
er, which specific tasks are assumed by the broker and
ey must be implemented are issues that should not

e not regulated by the brokered notification standard.
more, they are not trivial in distributed environments
the Grid, where scalability and dynamism are prevalent

ges.
paper describes an implementation of a notification
service for subscription management and notification

ination targetting highly dynamic pervasive Grid envi-
ts that adopt the WSN standards. The service is based

istributed and decentralized architecture, which uses a
t-based indexing scheme and rendezvous-based commu-
n model to realize the different WSN operations. The
is designed as an associative Distributed Hashtable and
lementation builds on the Meteor communication mid-
e [5]. To further support the efficiency and scalability
approach, we design self-optimization mechanisms for
g the number of messages transmitted by the system.
optimizations are meant to alleviate the overhead of
tion flows. We show experimental data that supports

ectiveness of the self-optimizing behavior.
rest of the paper is organized as follows. Section II
s a brief overview of the WSN family of specifications
ntifies the challenges for their implementation particu-
rid environments. Section III then presents our system

and functionality. Section IV provides the details of our
entation, followed by Section V, which describes and
es the system’s self-optimizing mechanisms. We outline
work in Section VI and finally present our conclusions
ections for further work in Section VII.

Grid Computing Conference 2006

II. OVERVIEW OF WSN

The WSN specification consists of 3 interrelated standards:
WS-BaseNotification (WSBN) [6], WS-BrokeredNotification
(WSBrN) [7], and WS-Topics (WST) [8]. WSBN specifies
the basic elements of the notification pattern: the Notifica-
tionConsumer (NC) that accepts notification messages, the
NotificationProducer (NP) that formats and generates these
messages, and the Subscription, a consumer-side initiated
relation between a producer and a consumer. The only fixed
field in a subscription is the consumer reference, which by
itself implies the consumer’s interest in all of the notifications
generated by the producer to which the subscription was made.
Optionally, a subscription can contain a filter, specified as
a FilterType element, that forces a producer to send only
those notifications that pass (match) the filter. WSBN does
not regulate the syntax or use of the FilterType element,
but suggests three basic types: topic filters, message content
filters, and producer properties filters. WSBN also regulates
subscription management, which the consumer can perform
given the reference it receives in response to a subscription.
This reference is meant to contain enough information to
enable it to contact and interact directly with the subscrip-
tion as a resource, as defined by WSRF. Thus, subscription
operations (unsubscribe, renew, pause, and resume) do not
include a subscription reference as a parameter. In addition
to the push-style pattern of notification, where producers send
notifications directly to consumers, WSBN defines a pull-style
pattern, where messages are stored at a pre-defined location
(a pull-point) until they are retrieved by the consumer.

WSBrN defines the NotificationBroker (NB) entity and its
expected functionality. A notification broker is an interme-
diary Web service that decouples NC’s from NP’s [7]. A
broker is capable of subscribing to notifications on behalf of
consumers and is capable of disseminating notifications on
behalf of producers. Consumers and producers thus interact
dynamically and anonymously through the NB without the
need for explicit knowledge of each other’s identities or
locations. Management of this knowledge is delegated to the
broker. A NB essentially implements the NC, NP, and other
interfaces defined in WSBN. As a specific functionality, a
notification broker can accept producer registrations, which
is meant for realizing the demand-based publishing pattern.
Using this pattern, publishers avoid the (possibly expensive)
task of creating notifications when no subscriptions (and, thus,
no consumers) exist for them. To this end, a NP must register
with the NB, providing a set of topics. When subscriptions
are made that correspond to or include topics in a particular
producer’s registration, the NB subscribes to the producer
for those topics. Only then does the producer start sending
notifications.

Finally, WST tries to standardize the way in which topics
are defined, related, and expressed. It defines the notion of a
topic space, where all of the topics for an application domain
should be defined and organized, possibly in a hierarchical
way. A topic expression is the representation of a particular

topic o
is iden
three d
express
express
a path
Here m
the sub
in the
concre
wildca
topic h

A. Imp

The
challen
reflecte
many
tion se
handle
service
vice p
notifica
through
central
ity to j
a dyna

Inter
highly
possibl
fined a
Further
or orga
naming
[9] can
inform
which
on the
varied

III

Our
vice, i
Each o
ments
(produ
the wh
1. This
and the

Thro
sage ex
messag
express
for the
betwee

208
r range of topics. The syntax of a topic expression
tified by the topic expression’s dialect. WST defines
ialects: Simple, Concrete, and Full. A simple topic
ion is just the qualified topic name. A concrete topic
ion is used for hierarchical topic spaces, and is given in
notation, such as in myNamespace:news/tv/cnn.
yNamespace identifies the topic space, and each of
sequent identifiers belong to successively deeper levels
hierarchy. A full topic expression is the same as a

te expression, except that it uses special operators and
rd sequences for spanning multiple topics within the
ierarchy.

lementation Issues in Grid Environments

nature of pervasive Grid environments poses specific
ges to the implementation of WSBrN that must be
d in its design. Grids are large-scale systems where

potential producers and consumers (sensors, computa-
rvices, agents, etc.) need to exchange information. To
the large number of potential clients, the notification
must be distributed, decentralized, and scalable. Ser-

roviders participate by making nodes available to the
tion system, and can in turn make use of the system
these nodes. A peer-to-peer design avoids the need for

ized control and gives the service providers the flexibil-
oin or leave the system at will. This behavior requires
mic and self-configuring underlying infrastructure.
actions between Grid components are also dynamic and
decoupled. The dynamicity in the types of interactions
e in a pervasive Grid implies that they cannot be prede-
nd classified, as is the case with topic spaces in WSN.
more, interactions may be made across application
nizational domains so that global synchronization of
conventions is not feasible. Content-based interactions
overcome these limitations by being based on a global

ation space from which notification content is drawn,
is synchronized on a semantic level. Thus, depending
mechanisms used, interactions can potentially be as

and dynamic as notifications themselves.

. DISTRIBUTED CONTENT-BASED NOTIFICATION

BROKER

system, referred to henceforth as the notification ser-
s a distributed and decentralized notification broker.
f the nodes within the system is a peer that imple-
the NotificationBroker interface, and an external client
cer or consumer) can interact with any of them. Thus,
ole system acts as a single NB, as illustrated in Figure
is important because the interface is not a bottleneck,
system has no single point of failure.

ugh this interface, clients and brokers realize the mes-
changes defined in the WSN specifications, using XML
es that represent subscriptions, notifications, etc. Topic
ions are used by the notification service as identifiers
se messages, and provide the means for matching
n them. Unlike a purely topic-based system, such as

Fig. 1. Layout of the broker network. Matching subscriptions and notifi-
cations will be routed to the same rendezvous node, which will perform the
matching and relay the notification.

WSN with topic filtering, topics in the notification service
are meant to be content-based. The idea is to remain as
close as possible to the notation and semantics defined in
WS-Topics for topic expressions, both to support applications
that implement this standard and to simplify content-based
indexing, avoiding having to parse the payload content (which
is necessary when using message content filtering as described
in WSN).

Topics in the notification service are expressed using the
same notation as in the Concrete dialect of WST (see Section
II); the difference is that, while normally the topic is an atomic
unit that should correspond to an actual path in the topic space
definition, here each of the identifiers is taken as a value from a
separate dimension in a multi-dimensional information space,
where only the type of each dimension is defined. Thus, the
range of topics is limited only by the possible combinations
of the values along each dimension.

To observe the difference, consider a weather monitoring
application that subscribes to sensor data. In this example,
the application may define the information space with
three dimensions: geographic area, barometric pressure, and
temperature. A topic for a notification in this system might
then be weatherService:Piscataway,NJ/29/48.9,
while a subscription could be
weatherService:*,NJ/>25/<50. Defining a
hierarchical topic space for this type of topic expression
would not be practical, since individual topic identifiers
would be needed for each geographic location, and, worse
still, for each numeric value.

The system uses a rendezvous-based messaging model [10],
in which matching messages “meet” at some node within the
network, referred to as a rendezvous node (see Figure 1).
The messaging model also applies the concept of reactive
behaviors, by which the behaviors at rendezvous nodes are
determined by actions embedded in the message request (in
this case, subscribe, notify, etc.).

A Distributed Hashtable (DHT) is a data structure that

Fig. 2.
is receiv
tracted. T
space to
to the re

associa
in a di
store o
our sy
to the
out. Th
that m
handle
span m
ranges.
the mu
based i
space f
the ide
networ
is able
ranges
to the
comple
reduce
(becau
single

Fina
organiz
bounde
of nod
manag
dynam
the bas

A. Sub

As
Subscr
a topic
in the
receive
decom
DHT t
can co
multipl

209
Architecture and behavior of the distributed system. An XML message
ed by the WS interface, and the action and topic expression are ex-
he topic expression is mapped by the DHT from its multidimesional
a node ID, which it then uses to route the message on the overlay

ndezvous node, which must execute the corresponding action.

tes objects identified with a set of keys with nodes
stributed system and that provides the mechanisms to
r retrieve these objects through a put/get interface. In
stem design, a DHT is used to map matching topics
same nodes, where the specified actions are carried
is way, each node manages a distinct subset of topics

ap to it. However, the mapping used by the DHT must
the possibility of complex topic expressions used to
ultiple simple topics through the use of wildcards and
This cannot be done using simple hashing. Instead,

ltidimensional information space used by the content-
ndexing scheme is mapped to a 1-dimensional identifier
or physical nodes in the network. For any single topic,
ntifier that it maps to is assigned to the node in the
k with the closest succeeding identifier. This mechanism

to map complex topics obtained by wildcards and
to “clusters” of consecutive identifiers that correspond

identifiers of the individual topics. This guarantees that
x topics and simple topics will meet as required and

s the number of nodes that correspond to complex topics
se consecutive identifiers are likely to be assigned to a
node).
lly, the nodes that make up the peer network are
ed as a structured overlay network, which guarantees
d costs in terms of number of messages and number
es involved in routing. The overlay also has self-

ing capabilities for reconfiguring in the face of the
ic arrival and departure of nodes. Figure 2 illustrates
ic functionality of the architecture.

scribe and Notify

a NP, the broker accepts subscriptions from clients.
iptions handled by the notification service must contain
expression within the FilterType element, as explained
previous section. When a subscription message is

d by any one of the brokers, its topic expression is
posed into its constituent values and mapped by the
o the node identifier space. Since a subscription topic
ntain wildcards or ranges, the subscription may span
e topics, which may correspond to one or several nodes.

These nodes store the subscription until the termination time
that is part of the subscription message. If no termination time
is specified, then the subscription is kept indefinitely or until
cancelled by the client (a system-wide maximum TTL can
be employed to avoid keeping old subscriptions that are never
cancelled). To produce a unique identifier for the subscription,
the entire topic is hashed, along with the consumer endpoint
reference. This ensures the differentiation of subscriptions for
the same topic or topics from different consumers. The unique
identifier is appended to the topic expression, which is returned
to the client as the subscription reference to be used for
subscription management (as described in the next section).

Notifications are handled by brokers, acting as NC’s, upon
invocation of the Notify method. The procedure is similar to
that of a subscription. If the notification’s topic expression
is singular, in the sense that it does not contain wildcards
nor ranges that span multiple topics, then the notification
maps to a single rendezvous node within the network. If
a subscription for that topic exists at the rendezvous node,
then the consumer reference is extracted from the subscription
record stored at the node and used to connect to the client and
relay the message. Figure 1 also illustrates this rendezvous
process. If a notification is identified by a topic expression
that spans mutliple topics, the notification isn’t routed to a
rendezvous node as above. The reason for this is that there
might exist multiple rendezvous nodes for it, a number of
which may store the same matching subscription, resulting in
the same notification being relayed to a consumer multiple
times. Instead, the interface node that received the notification
queries the network for subscriptions, and then directly relays
the notification only to each different consumer reference from
the subscriptions it receives. A similar procedure is also used
for demand-based publishing, as explained in Section III-D.

B. Subscription Management

As was mentioned in the previous section, a subscription
reference in the notification service consists of a topic expres-
sion and a unique identifier. The functions defined by WSN for
the SubscriptionManager and PausableSubscriptionManager
interfaces depend on this subscription reference because, given
that nodes can enter and leave the system at any time, subscrip-
tions cannot be tied to a particular rendezvous node. Recall
from Section II that in WSRF an endpoint reference can be
used to interact with a subscription resource directly. However,
because of the above and the fact that we do not assume that
subscriptions are WSRF resources, such endpoint references
are not used. Thus, the topic expression is always used to
route the requests to the node(s) at which the corresponding
subscription is currently stored. Once at these nodes, the
subscription’s unique identifier is used to quickly obtain the
particular subscription and execute the appropriate action.

C. Pull-Style Notification

Pull-style notification in the notification service is done
in a very similar way to the way regular subscriptions are
handled. The only difference is that, when a pull-point creation

Fig. 3.
subscrip
overlap

request
created
stored.
that be
consum
it queri
the not
respon
to the

D. De

Publ
exactly
is used
networ
howeve
III-A m
match
sion. If
origina
the top
mechan

A. WS

The
implem
ment t
brokere
Java ob
of plac
is used
elemen
our ow
were r

• Th
re
us

210
Publisher registration and subsequent subscription. Notice that a
tion and notification are not necessarily the same, but as long as they
as some node, the registration will be retrieved.

is made to a broker, a message repository is also
at each rendezvous node where the subscription is
Notifications are stored in these repositories rather

ing relayed directly to the consumers. Finally, when a
er invokes the GetMessages command on a broker,
es the network with the subscription reference to obtain
ifications stored at the repositories, constructs a single
se with all of these notifications, and sends them back
client.

mand-based Publishing

isher registration occurs in the notification service in
the same way as a subscription. The registration topic
to route a registration message to a node or nodes in the
k. In order to accommodate demand-based publishing,
r, the procedure for a subscription detailed in Section
ust now include a query for publisher registrations that

(or, rather, overlap with) the subscription’s topic expres-
such registrations exist, then the NB that received the

l subscription subscribes in turn to the producer(s) for
ic(s) given in the registration(s). Figure 3 illustrates this
ism.

IV. IMPLEMENTATION DETAILS

BrN Service

Web Service interface for the notification broker was
ented in Java using the JWSDP 2.0 API and develop-

ools. First, the XML schema for base notification and
d notification, provided in [1], were transformed into
jects using the JAXB binding tools. There are a number
es in the schema where the element type xsd:any
to indicate configurable parameters for the message

ts. In order to conform to both the Java platform and
n implementation architecture, some of these elements
edefined:
e FilterType element from the WSBN schema was

defined to contain a topic expression because topics are
ed for defining subscriptions.

• The TopicExpressionType element was redefined to con-
tain a xsd:string element for holding topic strings as
defined in WST.

• The Message element in the NotificationMessage-
HolderType definition was redefined to be of type
xsd:string. This is not a limitation, since the message
is application specific data that can be encoded as and
interpreted from a string. This is mainly to facilitate its
manipulation in Java.

• A SubscriptionReference element was added to the mes-
sages defined for subscription management (Renew, Un-
subscribe, etc.), which is required to find particular sub-
scriptions (Section III-B).

After the Java objects were created from the schema, the
WSDL documents were used to create the Java service inter-
faces and implementing classes, which were then deployed as
a service endpoint for a NB. This endpoint can then be run
on an Apache or similar web service container to receive and
respond to client requests.

Earlier, we mentioned that every network node in principle
implements the NotificationBroker interface. However, as can
be noted in Figures 1 and 3, not all nodes need do so. This
is important because some nodes may not have access to or
be able to run a web service platform. Thus, only nodes with
such capability will serve as the interface with the system;
some of these may be well-known service endpoints or may
be registered in a directory service for discovery. Other system
nodes may implement the WS interface or run only as DHT
nodes and provide and perform subscription management,
matching, and notification tasks.

B. Underlying Infrastructure

We based our implementation on the Meteor content-based
communication middleware [5]. Meteor supports the paradigm
of Associative Rendezvous (AR), which is similar to the
design presented here, and also applies the concept of reactive
behaviors, which allows the multiple interaction semantics
defined in WSN to be implemented. DHT functionality in
Meteor is provided by a content-based mapping and rout-
ing infrastructure known as Squid [11]. Squid uses Hilbert
space filling curves to realize the content-based mapping as
described in Section III and optimizes message routing based
on this mapping. The structured overlay that supports the peer
network is the Chord [12] overlay network, which is a one-
dimensional overlay as employed by the mapping mechanism,
and effectively implementents the self-managing behavior
required for handling the dynamic arrival and departure of
nodes. This overlay also provides the system with a level of
fault tolerance, given that routing capabilities can be preserved
in the face of node failures. These system layers are each
implemented as JXTA services, so that peer discovery and data
message transport are carried out by the JXTA framework.

The Meteor and Squid systems have been deployed on
various distributed platforms, including a university-wide Grid
and the PlanetLab [13] planetary-scale distributed testbed,

as wel
tems h
numbe
distribu
which
to the

The
reduce
any red
in the
individ
the cas
XML
the JX
how m
one im
the pac
cations
overhe
KB, w
one me
by the
the net

A. Gro

This
and fre
notifica
within
allowe
would
reduce
when a
several
with lo
approp
constra

With
be gro
that co
messag
are not
a subs
differe
can be
on top
system
about s
groupin
mechan
describ

The
is as fo
messag

211
l through simulations. The performance of these sys-
as been evaluated with respect to end-to-end latencies,
rs of nodes involved in queries and routing, and load
tion and balancing. For results of these evaluations,

demonstrate the scalability of these systems, please refer
following publications [11], [5], [14].

V. SELF-OPTIMIZATION MECHANISMS

number of messages sent within the system can be
d at the notifications level, which is important because
uction in the number of messages leads to a reduction
overhead involved in packaging and delivering each
ual message, and to an improvement in scalability. In
e of Web Services, this overhead is incurred mainly by
and SOAP headers. In addition, the messaging within
TA framework also adds considerable overhead. To see
uch bandwidth is actually consumed by overhead in
plementation, a sniffer program was used to capture
ket flows between the nodes in the network for notifi-
. For messages between network nodes, the combined
ad of XML and JXTA for each message is just over 3.5
hich amounts to about 28 Kbps in a message flow of
ssage per second. The following mechanisms are used
system to reduce the number of individual messages in
work.

uping of Notifications by Buffering

optimization is meant to reduce the flows of small
quent notifications. A simple way to deal with these
tion flows is to buffer and group several notifications
a single notification message, a mechanism which is

d by the WSN XML schema. This way, the headers that
have been transmitted with every individual message are
d to a single header on a grouped message. Determining
nd how many messages to buffer, however, depends on
factors, and thus it is worthwhile to equip the system
gic that allows it to autonomously determine the most
riate level of message aggregation based on high-level
ints.
out application specific considerations, messages can
uped based on two criteria. The first is on messages
rrespond to the same topic, and the second is on
es that match the same subscription. These criteria
necessarily the same, since, depending on how broad

cription is made (with wildcards or ranges), several
nt topics will match a single subscription. The system
nefit from applying both criteria, since grouping based
ic equality can be done when messages enter the
at an interface node, which doesn’t necessarily know
ubscriptions for that topic, and then subscription-based
g can be determined at the rendezvous nodes. The
ism, however, is the same in both cases, so we will
e grouping based on topic equality.
mechanism for grouping and packaging of notifications
llows. Each interface node keeps a separate buffer of
es for every topic it receives (garbage collection can be

employed to eliminate buffers for which no messages arrive
for a period of time). Each buffer is configurable by setting the
length of the period during which messages are accumulated.
This buffering level is determined by managers associated with
each buffer, the design of which is the real issue of this setup.

If the buffering period is determined only with respect
to bandwidth utilization (the number of messages), then the
solution is trivial because a higher buffering level (more mes-
sages grouped together) always increases the saving achieved.
If a limit is set on the buffering period, according to the
maximum latency allowed for each individual message, then
the solution would always be set to this limit. However, a
more balanced solution should consider the tradeoff between
bandwidth utilization and message latency. An optimal point
can be found between a buffering period of zero (minimum
latency, maximal bandwidth consumption) and one equal to the
maximum allowed latency (highest buffering level, minimal
bandwidth consumption). This is the range used in Equation
(1) below, although the reciprocal of the incoming rate is used
as a lower bound instead of zero (any period set smaller than
the incoming message period would result in no buffering).
Instead of manually assigning a weight to each extreme, a
dynamic solution is determined based on the relative size of
the payload with respect to the total message size (Equation 2
below). The rationale behind this is that the relative saving in
bandwidth is greater for small messages because the overhead
constitutes a larger fraction of the total data sent, whereas for
large messages the overhead becomes relatively insignificant.
In the former case, there is greater payoff for sacrificing
latency, and thus buffering should have a larger weight. For the
latter case, the reverse is true. Finally, the period is calculated
by obtaining a value within the range determined by the
weight, using Equation 3. If the incoming rate is very low,
with a period higher than the maximum latency, then Equation
3 is not used, and rather the period is set directly to zero.

range = maxLatency − avgIncomingRate−1 (1)

weight =
avgPayload

overhead + avgPayload
(2)

period = maxLatency − weight × range (3)

As a proof-of-concept, experiments were conducted for
single message flows of different incoming rates and payload
sizes. The maximum latency allowed for messages at each
node is 1 second. The buffering period, as well as the actual
groups of messages transmitted by the system, were observed
to obtain the overhead bandwidth consumption. Figure 4 plots
the results. In both graphs, the top and bottom lines correspond
to the maximum and minimum values that the corresponding
measure can take, given the incoming rate. The lines in
between correspond to flows with payload sizes of 10, 100,
500, 1000, 5000, and 10000 bytes. In the top graph, they
appear in this order from bottom to top, the overhead being
lower for smaller payloads. In the bottom graph, they appear
in order from top to bottom. Notice that savings in bandwidth
utilization are substantial, even though buffering periods are

Fig. 4.
Lines co
and max
payload

distribu
bufferi
rate of

For
several
at diffe
such a
ability
mechan
to thes
of the
avoide
the mi
calcula
bufferi
be buf
This n
for wh
and is

To t
an inte
topic f
messag
at rand
of thes
variabi
during

212
Results for buffering with different incoming rates and payload sizes.
rrespond to the different payload sizes, bracketed by the minimum
imum values for each measure. Top: Overhead bandwidth, grows with
size. Bottom: Buffering period set, decreases with payload size.

ted within the range of allowable latencies. The lowest
ng period set in this case is 373 seconds for message
20 messages per second and 10000 bytes per message.

irregular notification flows, possibly originating from
producers publishing notifications on the same topic

rent time intervals, several complications are possible,
s short bursts of notifications at high rates, high vari-
in the incoming rate, and concurrency. A number of
isms were used to reduce the sensitivity of the system

e conditions. To emphasize the self-managing aspect
system, the use of fixed low level parameters was

d. For example, instead of using a fixed threshold for
nimum change in the buffering period, the threshold is
ted dynamically based on whether or not the change in
ng would cause at least one message more or less to
fered at the current estimated incoming message rate.
ew parameter (the change in the number of messages
ich a change in period is allowed) is at a higher level
more meaningful than the period alone.

est the behavior of the system under these conditions,
rface node was set to receive messages with the same
rom 32 different producers, each one of which sent
es of random payload size between 10 and 500 bytes
om intervals of up to 5 seconds. The combined effect
e notifications produces a high message rate, with high
lity. Figure 5 shows the changes in the buffering period
the time of the test.

Fig. 5. Change in the buffering period with highly variable incoming periods

B. Demand-based Notification Relay

Ideally, notifications should not be sent if no subscribers
exist for them. Demand-based publishing, explained in Section
III-D, is WSN’s provision for dealing with this issue. However,
demand-based publishing depends on producers registering
their topics with the notification broker, which particular
publishers may not choose to do or may not be able to do if
they do not implement the NP interface. To further optimize
messaging, the system implements a mechanism which is
similar to that of demand-based publishing but that is based on
the topics of individual notifications. The idea is that interface
nodes should determine when not to relay notifications to
rendezvous nodes based on the existing subscriptions.

Unlike publisher registrations that define the topics that
will be produced beforehand, an interface node has no way
of knowing which topics it will have to handle. Registering
for every topic received would also be inefficient. Thus, the
mechanism devised is implemented as follows. Each interface
node keeps subscription caches associated with particular
topics. If there is no cache associated to a particular topic
when a notification for it is received, the interface node queries
the network for subscriptions for that topic. If any are found,
they are placed in the subscription cache, which is marked as
empty otherwise. Subsequent notifications with the same topic
will only be relayed if the corresponding subscription cache is
not empty. Cached subscriptions retain the TTL information,
so that they will expire in the cache if they expire at the
rendezvous nodes. To avoid making a query for every topic
received, locality is exploited by checking a topic against
all cached subscriptions. New queries are only made if no
subscriptions exist in these caches (note that for these topics,
the notification is relayed in any case).

Meanwhile, at the rendezvous nodes that responded to
the query, a temporary registration is kept of the interface
nodes and their corresponding queries. This ensures that if
a subscription did not exist at the time of the query, a
matching subscription made thereafter can be made known
to the interested nodes, so that a notification for which a
subscription exists is never dropped. The same happens for
the cancellation of subscriptions. Because they are potentially

more n
ing the
are use
a cach

The
query a
one me
New q
overhe
notifica
unless
order a

In S
WSRF
Other
based
binding
diana U
on GT
is WS
of fun
and G
providi
ties, al
tations
WS-Br
WSBN
the Pu
WS-Ev
for We
providi
level. W
the IIS
thoroug
in [19]

The
tools, p
and ex
do not
posing
and sta
scalabl
is a re
as wel
generic
top of
in som
middle
its own
WSN i
approa
the sam
manag
can int

213
umerous than publisher registrations, rather than keep-
se registrations indefinitely, they are deleted once they
d. Thus, interface nodes must requery the network once
e for a particular topic becomes empty.
overhead of this mechanism for each topic are the
nd its corresponding response (2 messages), as well as
ssage per update of a subscription or its cancellation.

ueries are only triggered after cancellations. Thus, the
ad is small and can easily be made up when large
tion flows are not relayed while no subscriptions exist,
rates of subscriptions and cancellations are in the same
s the rate of notifications.

VI. RELATED WORK

ection I, we mentioned Apache’s Pubscribe [3] and
.NET [4] as implementations of the WSN standard.
implementaitons include pyGridWare [15], a Python-
implementation, the GT4 Globus Toolkit [16] with
s for both Java and C, and WS-Messenger from In-
niversity [17]. Note that Apache’s Pubscribe is based

4-Java. The primary focus of these implementations
RF, and, as a result, they provide different levels
ctionality for WSN. For example, the pyGridWare
T4 implementations of WSN are meant primarily for
ng notifications about the state of resource proper-
though GT4 does provide comprehensive implemen-
of WS-BaseNotification and WS-Topics, but not of

okeredNotification. Similarly, Pubscribe fully supports
and WST, but not WSBrN. One important aspect of

bscribe implementation is that it also fully supports
enting (WSE) [18], another publish/subscribe standard
b services driven primarily by Microsoft and IBM,
ng interoperability between the standards at a high

SRF.NET, which was developed using ASP.NET and
infrastructure, supports all of the specifications. A

h comparison of these implementations can be found
.
above implementations are meant to be development
roviding technology-specific bindings for the standards
tensible API’s. Like the standards themselves, they

address the issues that arise when actually com-
systems that make use of the notification protocols
ndards, such as service discovery, and efficient and

e routing of requests and messages. WS-Messenger
cent implementation of all the WSN specifications,
l as of WSE. Its main feature is its leveraging of a

messaging interface that can be adapted to work on
existing messaging systems that address these issues
e way. One of these systems is the NaradaBrokering
ware framework [20]. NaradaBrokering also provides

implementation of WSE, and an implementation for
s currently being developed for it. The objectives and
ch of the NaradaBrokering framework are essentially

e as those that underlie the work presented here; it
es a network of brokers through which end systems
eract, providing scalability, location independence, and

efficient routing. The difference is that Narada brokers are
organized in a hierarchical structure which must be maintained
through tighter coupling and control mechanisms imposed on
the participation (connection, disconnection) of broker nodes.

Content-based publish/subscribe over DHT’s is a topic for
which there is much current work. DHT functionality is
usually built using some sort of a structured overlay network,
the most popular of which are Chord [12], used here, Pastry
[21], and CAN [22], because they provide scalability, search
guarantees and bounds on messaging within the network, as
well as some degree of self-management and fault tolerance
with respect to the addition/removal of nodes. With this
foundation, designing content-based publish/subscribe systems
requires an efficient mapping between content descriptors and
nodes in the overlay network, as well as efficient techniques
for routing and matching based on these content descriptors,
which can contain wildcards and ranges for complex queries.
The work in [23], [24], [25], [26] addresses these issues to
some extent. Meteor and Squid differ from these approaches
mainly in the locality-preserving mapping used. The Meghdoot
system [26] also uses a locality-preserving mapping, but the
multidimensional address space used by its overlay network,
CAN, is costlier to maintain than Chord’s one dimensional
overlay. Of these systems, [23] also proposes buffering of
messages, but it does so statically by setting the buffering
level as a multiple of the incoming period. To our knowledge,
none of these systems are as yet used to implement the WSN
standards.

VII. CONCLUSION

We have described the implementation of a distributed
content-based notification broker service for WS-Notification
in the context of large-scale, dynamic Grid environments.
The issues of scalability and dynamism are addressed by our
system design and by our implementation, which is based
on a scalable and self-managing underlying infrastructure. We
also described and evaluated self-optimization mechanisms to
reduce the number of notification messages transmitted within
the network.

This system is yet to be tested in a WAN setting with real
application data. As described in [19], compatibility with other
implementations must be ascertained due to differences in
the tools and development platforms used. Other optimization
mechanisms, as well as improvements to those presented here,
can be explored. Of special interest is improving the way the
system can deal with flows of notifications with topics which
are syntactically different, but which are logically related (e.g.
those with numeric values on some dimension). Presently, the
system can only do buffering for these topics based on existing
subscriptions at rendezvous nodes, but other mechanisms can
be developed to further reduce messaging. Other issues, such
as reliability and fault tolerance at the messaging level, can
also be further developed.

REFERENCES

[1] OASIS WSN Technical Committee: http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsn.

[2] Gl
[3] Ap
[4] WS
[5] N.

cat
Jos

[6] S.
1.3
Jul
ws

[7] D.
1.3
Jul
ws

[8] W.
01
op

[9] P.
ma
no

[10] I. S
dir
PA

[11] C.
tra
Hi

[12] I. S
“C
in
14

[13] htt
lab

[14] N.
agg
Int

[15] py
[16] GT
[17] Y.

A
pu
Clu

[18] Ev
[19] M.

S.
S.
res
Int
(H

[20] S.
and
of
41

[21] A.
cat
of
(M

[22] S.
abl
Sa

[23] R.
pu
the
(IC

[24] D.
lish
Co

[25] I.
pu
fer
Ge

[26] A.
Co
Co

214
obus Alliance OGSA webpage: http://www.globus.org/ogsa/.
ache Pubscribe project home: http://ws.apache.org/pubscribe/.
RF.NET Project homepage: http://www.cs.virginia.edu/ gsw2c/wsrf.net.html.
Jiang, C. Schmidt, V. Matossian, and M. Parashar, “Enabling appli-
ions in sensor-based pervasive environments,” in Basenets 2004, San
e, CA, October 2004.
Graham, D. Hull, and B. Murray, Web Services Base Notification

(WS-BaseNotification), public review draft 01 ed., Oasis,
y 2005. [Online]. Available: http://docs.oasis-open.org/wsn/wsn-
base notification-1.3-spec-pr-02.pdf
Chappell and L. Liu, Web Services Brokered Notification
(WS-BrokeredNotification), public review draft 01 ed., Oasis,

y 2005. [Online]. Available: http://docs.oasis-open.org/wsn/wsn-
brokered notification-1.3-spec-pr-02.pdf
Vambenepe, Web Services Topics 1.3 (WS-Topics), public review draft
ed., Oasis, December 2005. [Online]. Available: http://docs.oasis-

en.org/wsn/wsn-ws topics-1.3-spec-pr-01.pdf
T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
ny faces of publish/subscribe,” ACM Computing Surveys, vol. 35,
. 2, p. 114131, 2003.
toica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet in-

ection infrastructure,” in Proceedings of ACM SIGCOMM, Pittsburgh,
, 2002, pp. 73–86.
Schmidt and M. Parashar, “Flexible information discovery in descen-
lized distributed systems,” in 12th IEEE International Symposium on
gh Performance Distributed Computing (HPDC-12’03), 2003.

toica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
hord: A scalable peer-to-peer lookup service for internet applications,”
Proceedings of ACM SIGCOMM, San Diego, CA, August 2001, pp.
9–160.
p://www.planet-lab.org/. [Online]. Available: http://www.planet-
.org/
Jiang, C. Schmidt, and M. Parashar, “A decentralized content-based
regation service for pervasive environments,” June 2006, accepted,

ernational Conference of Pervasive Services (ICPS).
GridWare project homepage: http://dsd.lbl.gov/gtg/projects/pyGridWare/.
4 tutorial: http://gdp.globus.org/gt4-tutorial/multiplehtml/index.html.
Huang, A. Slominski, C. Herath, and D. Gannon, “Ws-messenger:
web services-based messaging system for service-oriented grid com-
ting,” in Proceedings of the 6th IEEE International Symposium on
ster Computing and the Grid (CCGrid06), 2006.

enting specification: http://www.w3.org/Submission/WS-Eventing/.
Humphrey, G. Wasson, J. Gawor, J. Bester, S. Lang, I. Foster,

Pickles, M. McKeown, K. Jackson, J. Boverhof, M. Rodriguez, and
Meder, “State and events for web services: A comparison of five ws-
ource framework and ws-notification implementations,” in 14th IEEE
ernational Symposium on High Performance Distributed Computing
PDC-14), Research Triangle Park, NC, July 2005, pp. 24–27.
Pallickara and G. Fox, “Naradabrokering: A middleware framework

architecture for enabling durable peer-to-peer grids,” in Proceedings
ACM/IFIP/USENIX International Middleware Conference, 2003, pp.
–61.
Rowstron and P. Druschel, “Pastry: Scalable, descentralized object lo-
ion and routing for large-scale peer-to-peer systems,” in Proceedings
IFIP/ACM International Conference on Distributed Systems Platforms
iddleware), Heidelberg, Germany, November 2001, pp. 329–350.
Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
e content-addressable network,” in Proceedings of ACM SIGCOMM,
n Diego, CA, 2001, pp. 161–172.
Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-based
blish-subscribe over structured overlay networks,” in Proceedings of

25th International Conference on Distributed Computing Systems
DCS ’05), Columbus, OH, June 2005.
Tam, R. Azimi, and H.-A. Jacobsen, “Building content-based pub-
/subscribe systems with distributed hash tables,” Lecture Notes in

mputer Science, vol. 2944, pp. 138–152, 2004.
Aekaterinidis and P. Triantafillou, “Internet scale string attribute
blish/subscribe data networks,” in Proceedings of the ACM 14th Con-
ence on Information and Knowledge Management (CIKM), Bremen,
rmany, October 2005.
Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:

ntent-based publish/subscribe over p2p networks,” Lecture Notes in
mputer Science, vol. 3231, pp. 254–273, 2004.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Manish Parashar
