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Abstract. This paper presents the design, prototype implementation,
and evaluation of a runtime management framework for structured adap-
tive mesh refinement applications. The framework is capable of reactively
and proactively managing and optimizing application execution using
current system and application state, predictive models for system be-
havior and application performance, and an agent based control network.
The overall goal of this research is to enable large-scale dynamically adap-
tive scientific and engineering simulations on distributed, heterogeneous
and dynamic execution environments such as the computational “grid”.
Keywords: Adaptive runtime management; Structured adaptive mesh
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1 Introduction

Next-generation scientific and engineering simulations of complex physical phe-
nomena will be built on widely distributed, highly heterogeneous and dynamic,
networked computational “grids”. These simulations will provide new insights
into complex systems such as interacting black holes and neutron stars, forma-
tions of galaxies, subsurface flows in oil reservoirs and aquifers, and dynamic
response of materials to detonation. However, configuring and managing the ex-
ecution of these applications to exploit the underlying computational power in
spite of its heterogeneity and dynamism, presents many challenges. The over-
all goal of this research is to realize an adaptive runtime framework capable of
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tech) via grant number PC295251, and the DOE Scientific Discovery through Ad-
vanced Computing (SciDAC) program via grant number DE-FC02-01ER41184.



reactively and proactively managing and optimizing application execution us-
ing current system and application state, predictive models for system behavior
and application performance, and an agent based control network. Its overarch-
ing motivation is enabling very large-scale, dynamically adaptive scientific and
engineering simulations on distributed, heterogeneous and dynamic execution
environments such as the computational “grid”.

This paper presents the design, prototype implementation, and evaluation
of a proactive and reactive system-sensitive runtime management framework for
Structured Adaptive Mesh Refinement (SAMR) applications. System capabili-
ties and current state are obtained using the NWS (Network Weather Service) [9]
resource monitoring tool and used to appropriately distribute and load-balance
the dynamic AMR computation domain. Performance prediction functions hier-
archically combine analytical, experimental and empirical performance models to
predict the performance of the application, and to determine when the overheads
of dynamic load balancing are justified and if it is beneficial to redistribute load.
An active control network combines sensors, actuators and application manage-
ment agents and provides the mechanism to adapt the application at runtime.

The research presented in this paper extends our prior work on system-
sensitive runtime management and integrates the different runtime approaches
(reactive system-sensitive partitioning and proactive management using perfor-
mance functions) within a single adaptive and automated framework.

2 Enabling Realistic Simulations Using AMR

The design of the adaptive runtime framework is driven by specific problems in
enabling realistic simulations using AMR techniques. In this paper, we use the
3-D Richtmyer-Meshkov (RM3D?) instability encountered in compressible fluid
dynamics. The RM instability occurs when a plane shock interacts with a cor-
rugated interface between two fluids of different densities. As a result of such an
interaction, interface perturbation starts to grow because the transmitted shock
is converging at the wave peak and diverging at the valley. Converging shock
increases pressure and accelerates perturbation peak into the second fluid. RM
instabilities occur over a wide range of scales, from nearly microscopic objects,
such as laser fusion pellets, to objects of astronomical size, such as supernovae.

A key challenge in such a simulation is that the physics exhibits multiple
scales of length and time. If one were to employ zoning, which resolves the small-
est scales, the required number of computational zones would be prohibitive. One
solution is to use Adaptive Mesh Refinement (AMR) with multiple independent
timesteps, which allows the grid resolution to adapt to a local estimate of the
error in the solution. With AMR, the number of zones along with their location
in the problem space is continuously changing. Besides dynamic communication
and storage requirements, another challenge is that the local physics may change
significantly from zone to zone as fronts move through the system.

3 RM3D has been developed by Ravi Samtaney as part of the virtual test facility at
the Caltech ASCI/ASAP Center (http://www.cacr.caltech.edu/ASAP).



Distributed implementations of these simulations lead to interesting chal-
lenges in dynamic resource allocation, data-distribution and load balancing,
communications and coordination, and resource management. Furthermore, the
complexity and heterogeneity of the environment make the selection of a “best”
match between system resources, application algorithms, problem decomposi-
tions, mappings and load distributions, communication mechanisms, etc., non-
trivial. System dynamics coupled with application adaptivity makes application
configuration and runtime management a significant challenge. In this paper, we
address dynamic system-sensitive partitioning and load-balancing.

3 Adaptive Runtime Framework: Design Overview

The runtime management framework is composed of three key components:
a system characterization and abstraction component, a performance analysis
module, and an active control network module, described as follows.

3.1 System Characterization and Abstraction

The objective of the system characterization/abstraction component is to moni-
tor, abstract and characterize the current state of the underlying computational
environment, and use this information to drive the predictive performance func-
tions and models that can estimate its performance in the near future. Networked
computational environments such as the computational “grid” are highly dy-
namic in nature. Thus, it is imperative that the application management system
be able to react to this dynamism and make runtime decisions to satisfy applica-
tion requirements and optimize performance. These decisions include selecting
the appropriate number, type, and configuration of the computing elements,
appropriate distribution and load-balancing schemes, the most efficient com-
munication mechanism, as well as the right algorithms and parameters at the
application level. Furthermore, proactive application management by predicting
system behavior will enable a new generation of applications that can tolerate
the dynamics of the grid and truly exploit its computational capabilities.

3.2 Performance Analysis Module

The performance analysis module is built on Performance Functions. Perfor-
mance Functions (PF) describe the behavior of a system component, subsystem
or compound system in terms of changes in one or more of its attributes. Using
the PF concept, we can characterize the operations and performance of any re-
source in a distributed environment. Once the PFs of each resource used by an
application are defined, we compose these PFs to generate an overall end-to-end
PF that characterizes and quantifies application performance.

Our PF-based modeling approach includes three steps. First, we identify the
attributes that can accurately express and quantify the operation and perfor-
mance of a resource (e.g., Clock speed, Error, Capacity). The second step is to



use experimental and analytical techniques to obtain the PF that characterizes
and quantifies the performance of each system component in terms of these at-
tributes. The final step is to compose the component PFs to generate an overall
PF that can be used during runtime to estimate and project the operation and
performance of the application for any system and network state. This compo-
sition approach is based on the performance interpretation approach for parallel
and distributed applications [6, 7].

3.3 Active Control Network

The underlying mechanisms for adaptive runtime management of SAMR, ap-
plications are realized by an active control network of sensors, actuators, and
management agents. This network overlays the application data-network and
allows application components to be interrogated, configured, and deployed at
runtime to ensure that application requirements are satisfied. Sensors and actu-
ators are embedded within the application and/or system software and define
interfaces and mechanisms for adaptation. This approach has been successfully
used to embed and deploy sensors and actuators for interactive computational
steering of large, distributed and adaptive applications [4].

3.4 Adaptive Application Management

The key goal of the runtime management framework is to develop policies and
mechanisms for both “application sensitive” and “system sensitive” runtime
adaptations of SAMR applications. The former is based on current application
state while the latter is driven by current system state and system performance
predictions. Application sensitive adaptations [1] use the current state of the ap-
plication to drive the runtime adaptations. The abstraction and characterization
of the application state is used to drive the resource allocation, partitioning and
mapping of application components onto the grid, selection and configuration
of partitioning and load-balancing algorithms, communication mechanisms, etc.
System sensitive application management [8] uses current and predicted system
state characterization to make application adaptation decisions. For example,
the information about the current load and available memory will determine the
granularity of the mapping of application components to processing nodes, while
available communication bandwidths will determine the communication strat-
egy to be used. Similarly, application level algorithms may be selected based on
the type, specifications, and status of the underlying architecture. Finally, the
availability and “health” of computing elements on the grid may determine the
nature (refined grid size, aspect ratios, etc.) of refinements to be allowed.

4 Runtime Management Framework: Evaluation

We have developed and deployed a prototype runtime management framework
that uses current system state and predictive performance functions to proac-



tively and reactively manage the distribution and load-balancing of SAMR ap-
plications. The prototype framework has been integrated into the GrACE (Grid
Adaptive Computational Engine) [5] infrastructure’s adaptive runtime system.
GrACE is a data-management framework for parallel/distributed AMR and is
being used to provide AMR support for varied applications including reservoir
simulations, computational fluid dynamics, seismic modeling, and numerical rel-
ativity. This section presents the implementation and experimental evaluation
of this prototype using the RM3D CFD kernel.

4.1 Reactive System Sensitive Partitioning and Load Balancing

The adaptive runtime framework reacts to system capabilities and current sys-
tem state to select and tune distribution parameters by dynamically partition-
ing and load balancing the SAMR grid hierarchies. Current system state is
obtained at runtime using the NWS resource monitoring tool. System state
information along with system capabilities are then used to compute relative
computational capacities of each of the computational nodes. These relative ca-
pacities are used by the “system-sensitive” partitioner for dynamic distribution
and load-balancing. NWS periodically monitors and dynamically forecasts the
performance delivered by the various network and computational resources over
a given time interval. Measurements include the fraction of CPU time available
for new processes, the fraction of CPU available to a process that is already
running, end-to-end TCP network latency, end-to-end TCP network bandwidth,
free memory, and the amount of space unused on a disk.

This system information provided by NWS is used to compute a relative
capacity metric for each processor as follows [8]. Let us assume that there are K
processors in the system among which the partitioner distributes the workload.
For node k, let Py, be the percentage of CPU available, M}, the available memory,
and Bj, the link bandwidth. The available resource at k is first converted to a
fraction of total available resources, i.e.

K K K
Py=Pi/> Pi and My=My/> M; and By =By/> Bi (1)

i=1 i=1 =1

The relative capacity C}, of a processor is then defined as the weighted sum of
these normalized quantities, i.e.

Cr = prk + wy, My, + wy By, (2)

where w;,, wp,, and wy, are the weights associated with the relative CPU, memory,
and link bandwidth availabilities, respectively, such that wp, +wp, +wp = 1. The
weights are application dependent and reflect its computational, memory, and
communication requirements. Note that Zszl Cy = 1. If L is the total work to
be assigned to all the processors, then the work Lj, assigned to the kth processor
can be computed as Ly = CiL. The overall operation is shown in Figure 1.
The system sensitive adaptive partitioner is evaluated using the RM3D CFD
kernel on a Linux-based workstation cluster. The kernel used 3 levels of factor 2
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space-time refinements on a base mesh of size 128*%32*32. The cluster consisted
of 32 nodes interconnected by fast Ethernet (100MB). The experimental setup
consisted of a synthetic load generator (for simulating heterogeneous loads on
the cluster nodes) and an external resource monitoring system (i.e. NWS). The
evaluation comprised of comparing the runtimes and load balance generated for
the system sensitive partitioner with those for the default partitioning scheme
provided by GrACE. This latter scheme assumes homogeneous processors and
performs an equal distribution of the workload on the processors.

The improvement in application execution time using the system sensitive
partitioner as compared to the default non-system sensitive partitioner is il-
lustrated in Figure 2. System sensitive partitioning reduced execution time by
about 18% in the case of 32 nodes. We believe that the improvement will be more
significant in the case of a cluster with greater heterogeneity and load dynamics.

The adaptivity of the system sensitive partitioner to system dynamics are
evaluated for a cluster with 4 nodes, with the relative capacities C1, Cs, C3, and
C4 computed as 16%, 19%, 31%, and 34% respectively. The three system char-
acteristics, viz. CPU, memory, and link bandwidth, are assumed to be equally
important, i.e. wp = wy, = wp = 1/3, and the application regrids every 5 it-
erations. The load assignment for the GrACE default and the system sensitive
(ACEHeterogeneous) partitioners are plotted in Figures 3 and 4 respectively. For
the kth processor, the load imbalance I}, is defined as

|Wi — Li|
Ly

As expected, the GrACE default partitioner generates large load imbalances
as it does not consider relative capacities. The system sensitive partitioner pro-
duces about 45% smaller imbalances. Note that the load imbalances in the case
of the system sensitive partitioner are due to the constraints (minimum box size
and aspect ratio) that have to be satisfied while breaking boxes.

In order to evaluate the ability of the system-sensitive partitioner to adapt
to load dynamics in the cluster, the synthetic load generator was used on two

I = x100 % 3)
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processors to dynamically vary the system load. The load assignments at each
processor were computed for different sensing frequencies. Table 1 illustrates the
effect of sensing frequency on overall application performance. Dynamic run-
time sensing improves application performance by as much as 45% compared to
sensing only once at the beginning of the simulation. Figure 5 shows the rel-
ative processor capacities and load assignments for a sensing frequency of 20
iterations. The frequency of sensing depends on the load dynamics and can af-
fect application performance. In our experimental setup, the best application
performance was achieved for a sensing frequency of 20 iterations.

4.2 Proactive Management using Performance Functions

The adaptive runtime framework uses performance prediction functions to esti-
mate application execution times and to determine when the benefits of dynamic
load redistribution exceed the costs of repartitioning and data movement. The
performance functions (PF) model the execution of the SAMR-based RM3D ap-
plication and describe its overall behavior with respect to the desired metric. In
this experiment, we use the computational load as the metric and model applica-
tion execution time with respect to this attribute. The processing time for each
application component on the machine of choice (IBM SP and Linux Beowulf,
in our case) is measured in terms of the load, and the measurements are then
used to obtain the corresponding PF.

IBM SP “Seaborg”*: For our evaluation, we obtain the following two PFs:
PF; denotes the PF associated with small loads (< 30,000 work units) and

* The National Energy Research Scientific Computing Center (NERSC) IBM SP
RS/6000, named seaborg.nersc.gov, is a distributed memory parallel supercomputer
with 2,944 compute processors among 184 compute nodes.
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PFy, denotes the PF associated with high loads (> 30,000 work units). The PFs
increase linearly as the number of processes on each processor increases. The
PFs for small and high loads are as follows:

10 9
PF, = Zai*xi and PF, = Zai*xi 4)
i=0 i=0

where a; (i=0,1,...,10) are constants and z is the computational load. The coef-
ficients for the PF's for small and large loads are listed in Table 2.

Table 2. Constant coefficients for performance functions on IBM SP “Seaborg”

PF, Jao] 0.24819702 [a3]2.6207385¢-10 [aq|-3.3198527¢-22] a | 5.1340974¢-36 |
small[a;| 0.001067243 |a4|-4.6855919e-14]a7| 1.3903117-26 |a10|-3.1716301e-41
load [a2|-7.9638733¢-07 |as| 4.9943821e-18 |as| -3.56914e-31
PFy, [ag| -670.06183 |as|-1.0509561e-10]as|-8.3594889e-24] ag | 7.3129295¢-39
high [a1] 0.064439362 [a4|2.5819559¢-15 |ar| 1.7978927¢-28 |
load [a»]-7.5567587¢-07]as| 1.3903143¢-19 |as|-1.8236343¢-33]

Linux Beowulf “Discover”®: The performance function evaluation on the
Linux cluster yields a single PF as follows:

10
PF = Z b; * o (5)
=0

where b; (i=0,1,...,10) are coefficients (listed in Table 3) and z is the workload.

5 Discover is a 16-node Beowulf cluster at Rutgers University.



Table 3. Constant coefficients for performance function on Linux Beowulf “Discover”

bo| 6.0826507 |bs 2.4465223e-13|b6 -3.6882935e-29| bo 7.8471222e—47|
PF[b1]0.00048341426 |b4| -2.10405¢-18 |b7|7.8747669¢-35 [b10[-2.5582951e-53]
b>]-1.5930319e-08[b5 [1.1051294e-23bs |-1.0441739¢-40 |

Tables 4 and 5 show that the error incurred in modeling the execution time
based on the PF modeling approach is low, roughly between 0-8% for the IBM SP
and between 0-6% for the Beowulf cluster. Details about the PF-based approach
for modeling large-scale distributed systems are found in [2, 3].

Table 5. Accuracy of performance
Table 4. Accuracy of performance functions on Linux Beowulf “Discover”

functions on IBM SP “Seaborg”
Workload | Actual |PF derived| Error

Workload | Actual |PF derived| Error |(grid units)|time (sec)| time (sec) |rate (%)

(grid units)|time (sec)| time (sec) |rate (%)| 74880 9.4823 9.9852 5.3

13824 0.4420 0.4088 7.5 97344 9.8688 9.8859 0.17

18432 0.5140 0.5089 0.99 123656 10.3557 9.7612 5.74

23040 0.5735 0.5623 1.9 173056 11.0533 | 10.4147 5.77

35072 0.7088 0.7089 0 274560 11.2683 11.2393 0.26

430496 14.9336 | 15.5478 4.11

This PF-based model is used by the adaptive framework to determine when
the benefits of dynamic load redistribution exceed the costs of repartitioning
and data movement. For N processors in the system, let GlbLoad denote the
global workload for the structured dynamic grid hierarchy and LocLoad) de-
note the local load for processor k. The ideal workload per processor is given
by IdlLoad = GlbLoad/N. Using the PF-based approach, execution time es-
timates are obtained for ideal and local workloads for each processor, denoted
by PFtimeldl and PFtimeLoc respectively. Load redistribution is typically
expensive for small load variations; however, it is justified when the workload
imbalance exceeds a certain threshold, defined by

PFtimeldl — PFtimeLoc
Thresh = PFtimeLoc (©6)
A threshold of 0 indicates regular periodic load redistribution regardless of the
load-balancing costs. A high threshold represents the ability of the application
hierarchy to tolerate workload imbalance and determines when the overheads of
dynamic load balancing are justified and if it is beneficial to redistribute load.

The RM3D evaluation on the Beowulf cluster analyzes the effect of dynamic
load balancing on application recompose time in order to achieve better perfor-
mance. The experimental setup consists of the RM3D application executing on 8
processors for redistribution thresholds of 0 and 1. The application uses 3 levels
of factor 2 space-time refinements on a base mesh of size 64*16*16 with regriding




every 4 time-steps. Threshold of 1 considers the costs and benefits of redistribut-
ing load and results in recompose time being reduced by half (improvement of
almost 100%) as compared to when a threshold of 0 is used.

5 Conclusions

In this paper, we presented the design, prototype implementation, and evalu-
ation of an adaptive runtime framework capable of reactively and proactively
managing and optimizing application execution using current system and appli-
cation state, predictive models for system behavior and application performance,
and an active control network. The overarching motivation for this research is
to enable large-scale dynamically adaptive scientific and engineering simulations
on distributed, heterogeneous and dynamic execution environments such as the
computational “grid”. Experimental results using a distributed and adaptive
Richtmyer-Meshkov CFD kernel are presented. We are currently extending this
evaluation to larger systems and more heterogeneous configurations and to dif-
ferent application domains.
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