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Abstract

This paper presents the use of numerical simulations coupled with optimization techniques in oil reservoir modeling and produc-
tion optimization. We describe three main components of an autonomic oil production management framework. The framework
implements a dynamic, data-driven approach and enables Grid-based large scale optimization formulations in reservoir modeling.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The ultimate goal of reservoir modeling is to gen-
rate both good estimates of reservoir parameters and
eliable predictions of oil production to optimize re-
urn on investment from a given reservoir. This process
s performed by the use of numerical simulators that
epresent the multiphase fluid flow phenomenon un-
er the subsurface. However, little use has been made
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of reservoir simulations coupled with systematic o
mization techniques. The main advantage of appl
these mathematical tools to the decision-making
cess is that they are less restricted by human ima
tion than conventional case-by-case comparisons

A key issue is to come up with reliable predict
models, which operate by searching a large spa
oil production and reservoir parameters. Thedynamic
data-driven application systems(DDDAS) paradigm
provides a viable mechanism to address this issu
main feature of DDDAS is the on-the-fly interact
between and integration of numerical models and
from simulations or field measurements. The inte
tion of data and numerical models through DDDAS
lows for a more efficient search of the parameter sp
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Several obstacles, however, need to be addressed for
a successful application of DDDAS. The first one is
the computational time required to complete simula-
tions of complex, large scale reservoir models. Another
challenge is to implement the capability to manage and
navigate multi-terabyte datasets from simulations and
field measurements. Optimization strategies normally
evaluate hundreds or even thousands of scenarios (each
requiring a simulation run) in the course of searching
for the optimal solution to a given management ques-
tion. This process is extremely time-consuming and
data-intensive[1,2].

Grid computing is rapidly emerging as the dominant
paradigm for large-scale parallel and distributed com-
puting. A key contribution of Grid computing is the
potential for seamless aggregations of and interactions
among computing, data, and information resources,
which is enabling a new generation of scientific and
engineering applications that are self-optimizing and
dynamic data driven. However, achieving this goal
requires a service-oriented Grid infrastructure that
leverages standardized protocols and services to ac-
cess hardware, software, and information resources
[3,2].

In our previous work, we described a suite of tools
and middleware that enable execution and analysis
of large, distributed collections of simulations and
datasets[4,5]. In this paper, we present the infras-
tructure for solving optimization problems in dynamic,
data-driven reservoir simulations in the Grid. The in-
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code portability to many platforms, ease of integration
and interoperability with other software. It provides
a set of computational features such as memory man-
agement for general geometric grids, portable parallel
communication, state-of-the-art non-linear and linear
solvers, keyword input, and output for visualization.
A key feature of IPARS is that it allows the definition
of different numerical, physical and scale models for
different blocks in the domain (i.e., multi-numeric,
multiphysics, and multi-scale capabilities). A more
technical description of IPARS and its applications
can be found in[7].

2.2. Optimization algorithms

2.2.1. Very fast simulated annealing (VFSA)
This algorithm is a simulated annealing variant that

speeds up the process by allowing a larger sampling at
the beginning and a much narrower sampling at later
stages. This is achieved by using a Cauchy like distri-
bution. The second appealing feature of VFSA is that
each model parameter can have its own cooling sched-
ule and model space sampling schemes. This allows
selective control of the parameters and the use of a pri-
ori information (e.g., see[8]).

2.2.2. Simultaneous perturbation stochastic
algorithm (SPSA)

The novelty of the SPSA algorithm is the underly-
ing derivative approximation that requires only one or
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rastructure builds on three key components; a com
ational engine consisting of a simulation framew
IPARS) and optimization services, middleware for
ributed data querying and subsetting (STORM),
n autonomic Grid middleware (Discover/Pawn)
ervice composition, execution, and collaboration.
escribe these components and their application i

onomic data-driven management of the oil produc
rocess[3,6].

. Computational Grid components

.1. The integrated parallel accurate reservoir
imulator (IPARS)

IPARS represents a new approach to parallel re
oir simulator development, emphasizing modula
wo evaluations of the objective function regardles
he dimension of the optimization problem. In ot
ords, it does not require an accurate gradient com

ation. This feature allows for a significant decreas
he cost of optimization, especially in problems wit
arge number of decision parameters to be estim
his algorithm is suitable for noisy measurement

he objective function and can be customized to
orm a more global search by the injection of contro
andom noise (e.g., see[9]).

.2.3. Gradient based
These methods essentially use the approxim

radient of the objective function to derive a sea
irection. Along the search direction a better p

s located based on the response values. D
nt ways for generating the search direction
ult in different methods. Newton and quasi-New
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methods [10] and finite-difference stochastic ap-
proximation (FDSA) methods[9] are representative
examples.

3. Querying and subsetting of distributed data:
STORM

An increasingly important issue in Grid comput-
ing is to enable access to and integration of data in
remote repositories. An emerging approach is thevir-
tualizationof data sources through relational and XML
models[11–13]. STORM (formerly called GridDB-
Lite) [14] is a service-oriented middleware that sup-
ports data select and data transfer operations on sci-
entific datasets, stored in distributed, flat files, through
an object-relational database model. In STORM, data
subsetting is done based on attribute values or ranges
of values, and can involve user-defined filtering op-
erations. With an object-relational view of scientific
datasets, the data access structure of an application can
be thought of as aSELECToperation as shown inFig.
1. The〈Expression〉 statement can contain operations
on ranges of values and joins between two or more
datasets.Filter allows implementation of user-defined
operations that are difficult to express with simple com-
parison operations.

STORM services provide support to create a view of
data files in the form of virtual tables using application
specificextractionobjects. An extraction object can
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value on which the selected tuples are grouped together
based on the application specific partitioning of tuples.
STORM is implemented using DataCutter[16]. Data-
Cutter is a component-based framework[17] that im-
plements a filter-stream model for data processing. In
this model, data is pushed from data sources to des-
tination processors through a network of application-
defined processing components. Using DataCutter run-
time support, STORM implements several optimiza-
tions to reduce the execution time of queries. These
optimizations include (1) ability to execute a work-
flow through distributed filtering operations; and (2)
execution of parallelized data transfer. Both data and
task parallelism can be employed to execute filtering
operations in a distributed manner. If a select expres-
sion contains multiple user-defined filters, a network
of filters can be formed and executed on a distributed
collection of machines. Data is transferred from mul-
tiple data sources to multiple destination processors
by STORM data mover components. Data movers can
be instantiated on multiple storage units and desti-
nation processors to achieve parallelism during data
transfer.

4. An autonomic Grid middleware for oil
reservoir optimization

Discover[18] enables seamless access to, and peer-
to-peer integration of applications, services, and re-
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e implemented by an application developer or g
rated by compiler[15]. It returns an ordered list
ttribute values for a data element in the dataset,
ffectively creating a virtual table. The analysis p
ram can be a data parallel program. The distribu
f tuples in the parallel program is incorporated i
ur model by theGROUP-BY-PROCESSORopera-

ion in the query formulation.ComputeAttribute is an-
ther user-defined function that generates the attr

ig. 1. Formulation of data retrieval steps as an object-relat
atabase query.
ources on the Grid. The middleware substrate
rates Discover collaboratory services with the G
ervices provided by the Globus Toolkit using
ORBA Commodity Grid (CORBACoG) Kit[19]. It
lso integrates the Pawn peer-to-peer messaging
trate[20]. Pawn enables decentralized (peer) serv
nd applications to interact and coordinate over w
rea networks. Finally, the DIOS[21] distributed ob

ect infrastructure that enables development and m
gement of interactive objects and applications,
apsulating sensors and actuators, and a hierarc
ontrol network. DIOS also allows the dynamic d
ition and deployment of policies and rules to mo

or and control the behavior of applications and/or
lication services in an autonomic manner[22]. De-

ailed descriptions of the design, implementation,
valuation of Discover components can be foun
18–22].
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5. Putting it together: data-driven oil
production optimization

The oil production optimization process involves
(1) the use of an integrated multi-block reservoir
model and several numerical optimization algorithms
(global and local approaches) executing on distributed
computing systems on the Grid; (2) distributed data
archives for historical, experimental (e.g., data from
field sensors), and simulated data; (3) Grid services
that provide secure and coordinated access to the
resources and information required by the simula-
tions; (4) external services that provide data, such as
current oil market prices, relevant to the optimiza-
tion of oil production or the economic profit; and
(5) the actions of scientists, engineers and other ex-
perts, in the field, the laboratory, and in management
offices.

In this process, item 1 is implemented by the IPARS
framework. Both forward modeling (comparison of the
performance of different reservoir geostatistical param-
eter scenarios) and inverse modeling (searching for the
optimal decision parameters) can greatly benefit from
integration and analysis of simulation, historical, and
experimental data (item 2). Common analysis scenar-

optimiz

ios in optimization problems in reservoir simulations
involve economic model assessment as well as tech-
nical evaluation of changing reservoir properties (e.g.,
the amount of bypassed oil, the concentrations of oil
and water). In a Grid environment, data analysis pro-
grams need to access data subsets on distributed stor-
age systems[4,14]. This need is addressed by STORM.
The Discover autonomic Grid middleware provides the
support for items 3, 4, and 5. We now discuss the use
of Discover/Pawn to enable oil reservoir optimization
[2].

The overall autonomic oil reservoir optimization
scenario is illustrated inFig. 2. The peer components
involved include: IPARS providing sophisticated sim-
ulation components that encapsulate complex mathe-
matical models of the physical interaction in the sub-
surface, and execute on distributed computing systems
on the Grid; IPARS Factory responsible for configur-
ing IPARS simulations, executing them on resources
on the Grid and managing their execution; Optimiza-
tion Service (e.g., VFSA and SPSA); and Economic
Modeling Service that uses IPARS simulation outputs
and current market parameters (oil prices, costs, etc.) to
compute estimated revenues for a particular reservoir
configuration.
Fig. 2. Autonomic oil reservoir
 ation using decentralized services.
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These entities dynamically discover and interact
with one another as peers to achieve the overall ap-
plication objectives.Fig. 2 illustrates the key inter-
actions involved. (1) The experts use pervasive por-
tals to interact with the Discover middleware and the
Globus Grid services to discover and allocate appropri-
ate resource, and to deploy the IPARS Factory, Opti-
mization Service, and Economic model peers. (2) The
IPARS Factory discovers and interacts with the Op-
timization Service peer to configure and initialize it.
(3) The experts interact with the IPARS Factory and
Optimization Service to define application configura-
tion parameters. (4) The IPARS Factory then interacts
with the Discover middleware to discover and allocate
resources and to configure and execute IPARS simula-
tions. (5) The IPARS simulation now interacts with the
Economic model to determine current revenues, and
discovers and interacts with the Optimization Service
when it needs optimization. (6) The Optimization Ser-
vice provides IPARS Factory with an improved well
location, which then (7) launches new IPARS simula-
tions with updated parameters. (8) Experts can at any-
time discover, collaboratively monitor and interactively
steer IPARS simulations, configure the other services
and drive the scientific discovery process. Once the op-
timal well parameters are determined, the IPARS Fac-
tory configures and deploys a production IPARS run.

Fig. 3 shows the progress of optimization of well
locations using the VFSA and SPSA optimization al-
gorithms for two different scenarios. The goal is to
m jec-
t
3 he
w nd

ment in

a gray square at the bottom of the plot is a fixed produc-
tion well. The plots also show the sequence of guesses
for the position of the other production well returned by
the optimization service (shown by the lines connecting
the light squares), and the corresponding normalized
cost value (plots on the right inFig. 3(a) and (b)).

6. Policy-driven optimization

A key objective of this research is to formulate poli-
cies that can be used by the autonomic self-optimizing
reservoir framework to discover, select, configure, and
invoke appropriate optimization services to determine
optimal well locations. The choice of optimization ser-
vice depends on the size and nature of the reservoir.
The SPSA algorithm is suited for larger reservoirs with
relatively smooth characteristics. In case of reservoirs
with many randomly distributed maxima and minima,
the VFSA algorithm can be employed during the ini-
tial optimization phase. Once convergence slows down,
VFSA can be replaced by SPSA. Alternate optimiza-
tion schemes (e.g., genetic algorithms, local methods
such as Newton) can also be used if convergence breaks
down. Similarly, policies can also be used to manage
the behavior of the reservoir simulator. For example,
the policy may monitor convergence of the optimizer
and as it approaches the solution, it may use a finer mesh
and/or smaller timesteps. The policy may even attempt
to activate other numerical algorithms (e.g., time dis-
cretization schemes, solvers) or physical models (e.g.,
o

ned
t ntly
o t the
aximize profits for a given economic revenue ob
ive function. The well positions plots (on the left inFig.
(a) and (b)) show the oil field and the positions of t
ells. Black circles represent fixed injection wells a

Fig. 3. Convergence history for the optimal well place
 the Grid using (a) VFSA algorithm and (b) SPSA algorithm.

ne-, two-, or three-phase flow, geomechanical).
In an alternative scenario, policies may be defi

o enable various optimizers to execute concurre
n dynamically acquired Grid resources, and selec
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best well location among these based on some metric
(e.g., estimated revenue, time or cost of completion).
This aspect is important for speeding up the search, or
for studying the effects of parameters that were not in-
cluded at the start of the optimization. The autonomic
reservoir framework presented enables the decoupling
of services and the separation of policy and mechanism.
This allows external policies, such as those outlined
above, to be dynamically defined and used to manage
the behavior of the components/services, and to orches-
trate interactions between them to achieve overall op-
timization goals for the reservoir.

It is worth adding that the present paradigm has the
potential to exploit several levels of parallelism. That
is, for different geological and economical scenarios
(equally probable models) the optimization can be car-
ried out independently with different initial guesses for
the well location. Each realization and well location is
evaluated by means of the parallel reservoir simulator
IPARS, giving rise to a three-level hierarchy of totally
independent parallel tasks.

7. Conclusion

In this paper, we presented an infrastructure and its
components to support the autonomic oil production
management process. Use of this infrastructure to im-
plement Grid-enabled data-driven application support
can aid in gaining better understanding of subsurface
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