
Enabling High Speed Asynchronous Data Extraction and Transfer

Using DART ∗

Ciprian Docan, Manish Parashar

Center for Autonomic Computing/TASSL Laboratory

Rutgers University, Piscataway NJ 08854, USA

email: {docan,parashar}@caip.rutgers.edu

Scott Klasky

Oak Ridge National Laboratory

P.O Box 2008 Oak Ridge, TN, 37831, USA

email: klasky@ornl.gov

Abstract

As the complexity and scale of current scientific and
engineering applications grow, managing and trans-
porting the large amounts of data they generate is
quickly becoming a significant challenge. The in-
creasing application runtimes and the high cost of
high performance computing resources make online
data extraction and analysis a key requirement in ad-
dition to traditional data I/O and archiving. To be
effective, online data extraction and transfer should
impose minimal additional synchronization require-
ments, should have minimal impact on the computa-
tional performance, maintain overall Quality of Ser-
vice, and ensure that no data is lost.

In this paper, we present DART (Decoupled and
Asynchronous Remote Transfers), an efficient data
transfer substrate that effectively addresses these re-
quirements. DART is a thin software layer built on
RDMA technology to enable fast, low-overhead and
asynchronous access to data from a running simula-
tion, and support high-throughput, low-latency data
transfers. DART has been integrated with applica-
tions simulating fusion plasma in a Tokamak, be-
ing developed at the Center for Plasma Edge Simu-
lation (CPES), a DoE Office of Fusion Energy Sci-
ence (OFES) Fusion Simulation Project (FSP). A
performance evaluation using the GTC and XGC-
1 particle-in-cell based FSP simulations running on
the Cray XT3/XT4 system at Oak Ridge National
Laboratory demonstrates how DART can effectively
and efficiently offload simulation data to local service
nodes and remote analysis nodes, with minimal over-

∗The research presented in this paper is supported in part
by National Science Foundation via grants numbers CNS
0305495, CNS 0426354, IIS 0430826 and ANI 0335244, and
by Department of Energy via the grant number DE-FG02-
06ER54857, and was conducted as part of the NSF Center
for Autonomic Computing at Rutgers University. Note that
some of the restults in this paper were presented at the Cray
User Group Meeting in May 2007, but have not been published
in meeting proceeding.

heads on the simulation itself.

1 Introduction

High-performance computing is playing an important
role in science and engineering and is enabling highly
accurate simulations of complex phenomena. How-
ever, as the computing systems grow in scale and
computational capability, effectively utilizing these
platforms and achieving desired computational effi-
ciency becomes increasingly important and challeng-
ing. Furthermore, emerging scientific and engineering
applications are based on seamless interactions and
couplings across multiple and potentially distributed
computational, data, and information services. For
example, current fusion simulation efforts are explor-
ing coupled models and codes that simultaneously
simulate separate application processes and run on
different HPC resources at supercomputing centers.
These codes will need to interact at runtime with each
other, and with services for online data monitoring,
analysis, or archiving.

These scientific applications thus require a scal-
able and robust substrate for managing the large
amounts of data generated and for asynchronously
extracting and transporting them between interact-
ing components. For fusion simulations, for instance,
large volumes and heterogeneous types of data gener-
ated have to be continuously streamed from a petas-
cale machine’s compute to its service partition, and
from there to compute systems that run coupled sim-
ulation components, and to auxiliary data analysis
and storage machines. A key challenge that must
be addressed by such a substrate is getting the large
amounts of data being generated by these applica-
tions off the compute nodes at runtime, and over to
service nodes or another system for code coupling,
online monitoring, analysis, or archiving. To be effec-
tive, such an online data extraction and transfer ser-
vice must (1) have minimal impact on the execution

of the simulations in terms of performance overhead
or synchronization requirements, (2) satisfy stringent
application/user space, time and quality of service
constraints, and (3) ensure that no data is lost. On
most expensive HPC resources, the large number of
compute nodes are typically serviced by a smaller
number of service nodes where they can offload ex-
pensive I/O operations. As the result, the I/O sub-
strate should be able to asynchronously transfer data
from compute nodes to a service node with minimal
delay and overhead on the simulation. Technologies
such as RDMA allow fast memory access into the
address space of an application without interrupting
the computational process, and provide a mechanism
that can support these requirements.

In this paper, we present DART (Decoupled and
Asynchronous Remote Transfers), an efficient data
transfer substrate that effectively addresses the re-
quirements described above. DART is a thin software
layer built on RDMA technology to enable fast, low-
overhead and asynchronous access to data from a run-
ning simulation, and support high-throughput, low-
latency data transfers. The design, and prototype
implementation of DART using the Portals RDMA
library [2] on the Cray XT3/XT4 at Oak Ridge Na-
tional Laboratory is described. DART has been inte-
grated with applications simulating fusion plasma in
a Tokamak, being developed at the Center for Plasma
Edge Simulation (CPES), a DoE Office of Fusion
Energy Science (OFES) Fusion Simulation Project
(FSP), and is a key component of a high-throughput
data streaming substrate that uses metadata rich out-
puts to support in-transit data processing and data
redistribution for coupled simulations.

A performance evaluation using the GTC [10, 9]
and XGC-1 [3] particle-in-cell based FSP simula-
tions is presented. The evaluation demonstrates that
DART can effectively uses RDMA technologies to of-
fload expensive I/O operations to service nodes with
very small overheads on the simulation itself, allow-
ing a more efficient utilization of the compute ele-
ments, and enabling efficient online data monitoring
and analysis on remote clusters.

The rest of this paper is organized as follows. Sec-
tion 2 describes the architecture of DART and its key
components. Section 3 describes the implementation
on the Cray system and its operations. Section 4
presents the evaluation of DART. Section 5 presents
the related work, and Section 6 concludes the paper
and outlines future research directions.

Figure 1: Architectural overview of DART.

2 DART Architecture and Op-

eration

The primary goal of DART is to efficiently man-
age and transfer large amounts of data from appli-
cations running on the compute nodes of a HPC sys-
tem to local storage or remote locations, to enable
remote application monitoring, data analysis, code
coupling, and data archiving. The key requirements
that DART is trying to satisfy include minimizing
data transfer overheads on the application, achiev-
ing high–throughput, low–latency data transfers, and
preventing data losses.

Towards achieving these goals, we designed DART
so that dedicated nodes, i.e., separate from the appli-
cation compute nodes, asynchronously extract data
directly from the memory of the compute nodes us-
ing RDMA communication primitives. In this way,
we offload expensive data I/O and streaming oper-
ations from the application compute nodes to ded-
icated nodes, and allow the application to progress
while data is transferred. We designed DART to pro-
vide asynchronous communication abstractions for
environments that support only a single thread of
execution, i.e., operating systems tuned for scientific
computing that do not have support for threads.

DART architecture contains 3 key components as
show in Fig. 1: (1) a thin client layer (DARTClient)
which runs on the compute nodes of a HPC sys-
tem and is integrated with the application, (2) a
streaming server (DARTSServer) which runs inde-
pendently of the application on dedicated nodes and
is responsible for data extraction and transport, and
(3) a receiver (DARTReceiver) which runs on remote
nodes and receives and processes data streamed by
the DARTSServer.

2.1 RDMA Technology

The RDMA communication paradigm provides a win-
dow in the address space of a process. It supports
process to process communication models with zero-

copy, and OS and application bypass. Zero-copy op-
erations can transfer data directly from the user space
application memory buffers to a remote destination,
and thus it avoids making an extra copy of the data
into the kernel space. OS bypass operations can per-
form data transfers without involving the CPU (e.g.,
DMA transfers). Application bypass operations can
perform a data transfer while an application is run-
ning, and without interrupting the application. Thus,
RDMA communication mechanisms, are well suited
to implement an asynchronous transfer protocol that
has a very small impact on a running application.

The Portals [2] library is an abstraction of the
RDMA communication paradigm, that provides data
transfer primitives for memory to memory communi-
cation. It supports transfer operations for extracting
messages from a remote node’s memory, i.e., the pull
model (“get” operation) and for injecting messages to
a remote node’s memory, i.e., the push model (“put”
operation).

To support memory to memory data transfers be-
tween processes, the Portals library maps blocks of
an application memory (memory buffers) to the net-
work card, and thus makes them accessible to pro-
cesses running on remote nodes. To support this
mapping, it uses memory descriptors, which are Por-
tals data types containing internal bookkeeping in-
formation such as the start address and the length of
the memory buffers, current offsets, etc.

The asynchronous data transfers use the applica-
tion bypass feature, and they require a higher level
data signaling and transfer completion notification
mechanism. The Portals library can generate soft-
ware “events” for each rdma transfer operation to in-
dicate the start or the completion of a transfer. These
events are associated with a specific memory descrip-
tor and Portals uses an internal event queue, that is
associated this descriptor, to log them. An applica-
tion at a higher layer can enable and use these events
to implement the required notification mechanism.

2.2 The DART Client Layer

DARTClient is a lightweight software layer that runs
on the compute nodes of an HPC resource and is
integrated with the application. It is responsible for
two key functions, (1) control and coordination and
(2) data transfer.

The control and coordination function consists of
registering a compute node with a streaming server
at startup, and posting requests for transfer notifica-
tions to the streaming server at runtime. During the
registration phase, the DARTClient layer at the com-
pute node and the streaming server exchange identifi-

cation and communication parameters such as unique
numerical instance identifiers, communication offsets
and memory descriptor identifiers.

The data transfer function consists of setting up
the communication parameters, waiting on transfers
completion notification and releasing resources. To
post a transfer request, the DARTClient layer at the
compute node notifies the streaming server that it has
data ready to be sent, and sets up the parameters and
priorities for the transfer. It is then the responsibility
of the streaming server to actually schedule, execute
the transfer of the data, and notify back the DART-
Client on the completion of the operation.

We build the DARTClient directly on the RDMA
mechanism to expose two classes of memory descrip-
tors to the streaming server. The first class con-
sists of application level memory descriptors that
DARTClient creates during the registration phase,
announces to the associated streaming server, and
preserves throughout the lifetime of the application.
DARTClient defines two types of application level
memory descriptors – one is used to post request for
transfer notifications, and the other is used to re-
trieve transfer completion acknowledgments from the
streaming server.

The second class consists of stream level memory
descriptors that DARTClient creates for each data
stream the application generates. A data stream is a
continuous flux of bytes that have the same destina-
tion, e.g., a file. Stream level memory descriptors are
also of two types – the first is used to set up communi-
cation parameters and signals associated with a data
stream, and the second is used to map and expose
the actual memory buffers for the streaming server
to fetch and transfer from the application. DART-
Client creates these memory descriptors on-the-fly
when the application generates a new data stream,
and announces them to the streaming server as part
of the notification message.

DARTClient provides asynchronous abstractions
that enable the application layer to make non-
blocking “send” calls, and continue its computation
without waiting for the transfer to complete. The
underlying mechanisms use OS/application-bypass
capabilities provided by RDMA transfers to over-
lap data transfers with application computations,
and mask the cost of data transfers. DARTClient
uses multiple memory buffers to allow multiple data
streams of different sizes to proceed in parallel.

The client layer, also supports a cooperative data
transfer mode, in which multiple compute nodes write
in the same data stream, e.g., file. In the cooperative
mode, DARTClient is flexible and allows the appli-
cation to define and group together the nodes that

write to the same data stream. Based on the groups
defined at the application level, DARTClient coordi-
nates the nodes in a group at runtime, and for each
node computes an offset in the common stream where
the node should write at. DARTClient includes this
offset in the notification message that is post to the
streaming server, and allows the server to be stateless
with respect to a data stream.

2.3 The DART Streaming Server and
Receiver

DARTSServer is the DART streaming server compo-
nent that runs as a standalone application on ded-
icated nodes of a HPC system, and is responsible
for asynchronously extracting data from applications
running on the compute nodes, and streaming it to
remote clusters or to local storage. Multiple instances
of the DARTSServer can run on different nodes, and
cooperatively can service data transfer requests from
the larger number of compute nodes.

The key functions that DARTSServer provides in-
clude registration of the communication parameters
received from a compute node or another instance
of the DARTSServer, waiting for notification posts
of data transfer availability from the compute nodes,
scheduling and managing data extraction from the
compute nodes, and transferring the data out to lo-
cal storage or to remote clusters as requested by the
compute nodes. Data transfers have priorities based
on the size of the data blocks and the frequency at
which the application generates them. DARTSServer
assigns a higher priority to smaller and more frequent
data blocks, and assigns a lower priority to the less
frequent and larger data blocks. This priority mech-
anism prevents transfer of smaller blocks from be-
ing blocked by the transfer of larger blocks and en-
ables them to proceed in parallel with the larger block
transfers.

The primary performance goal of the
DARTSServer is to minimize transfer latencies
and maximize transfer throughput. To achieve these
goals, the streaming server pre-allocates commu-
nication memory buffers and associates them with
memory descriptors at startup. The number of
pre-allocated memory buffers and the size of each
buffer is influenced by multiple factors such as (1)
the maximum limit on the number of file descriptors
that can be used by a process (a memory descriptor
counts as an open file), (2) the memory available
on the host node, and (3) the size of the working
set (to avoid trashing behaviors). For example, the
implementation on the Cray XT3/XT4 at Oak Ridge
National Laboratory (described in more detail in

Figure 2: Data flow describing the operation of
DART.

Section 3) allocates 512 memory descriptors, and a
buffer of 4 MB for each descriptor.

In addition to the memory descriptors used for
the data transfers, the streaming server also allo-
cates memory descriptors for compute node registra-
tion and transfer signaling. The transfer signaling
function uses two descriptors on the streaming server
– the first descriptor accepts notification posts from
compute nodes of data availability, and the second de-
scriptor is used to send notifying acknowledgments to
compute nodes when an asynchronous transfer com-
pletes.

The DARTSServer is multi-threaded to allow asyn-
chronous and parallel data streaming, e.g., fetching
new data from compute nodes while streaming pre-
vious data to a remote cluster, as well as the data
transfer scheduling management to progress simul-
taneously, as illustrated in Fig. 2. The server uses
multiple queues to (1) manage the incoming compute
nodes transfer requests, (2) to schedule and prioritize
streaming operations, (3) to track and manage the
memory buffers in different states of a transfer, and
(4) to reduce synchronization contention between the
server threads. The server caches the memory buffers
and descriptors, and links them in different queues ac-
cording to the status of a data transfer, e.g., eqb con-
tains unused memory buffers, pqb contains memory
buffers for in-progress data transfers, and fqb con-
tains used buffers that are ready to be streamed or
saved.

The overall data flow associated with the opera-
tion of the DARTSServer is illustrated in Fig. 2. A
data transfer starts with a request for send message
generated by the application on a compute node and
posted on the notification descriptor (1) of the server.
The server extracts the notification messages in the
order of arrival (2), and encodes and inserts them in
a priority queue accordingly (3). Then, the server
processes the priority queues (4), schedules the data
transfers (5 and 6) and starts the asynchronous data

extraction from the compute nodes (6 and 7). A dif-
ferent thread in the server monitors the asynchronous
data completion (8), and schedules the data stream-
ing or saving (9 and 10). Then, the server finishes a
transfers (11, 12 and 13) and posts an acknowledg-
ment notification message on the notification memory
descriptor of the corresponding compute node.

2.4 DART API and Usage

The DART client layer (DARTClient) provides I/O
primitives that are very similar to standard Fortran
file operations, i.e., dart open(), dart write(), and
dart close(). We chose the names and signatures of
these operators to make the library easy to use by
scientists and to be incorporated into existing ap-
plication codes. DART additionally provides func-
tions to initialize and finalize the DART library, i.e.,
dart init(), and dart finalize(). DART also provides
API for compute node coordination to enable coop-
erative operations and interface with additional mid-
dleware.

DART operators are asynchronous. Typical us-
age of the DART API consists of a stream open
dart open() operation that returns a handle, one or
more non-blocking dart write() send operations on
this handle, and a stream end dart close() operation
on the handle. A DART operation may be in one
of three states, “not started”, “in progress” or “fin-
ished”. In case of the first two states, DART main-
tains stream state information, and when the applica-
tion calls dart finalize(), it ensures that all in-progress
operations finish. As a result, a call to dart finalize()
can block and should be called at the end of the ap-
plication so that it does not impact the simulation.

3 Implementation of DART on
the Cray XT3/XT4

3.1 System Description

We implemented DART on Jaguar, the Cray
XT3/XT4 at Oak Ridge National Lab. Jaguar [1] has
11k nodes logically divided into compute and service
nodes.

XT3 is the older version of the machine, and is built
up from compute nodes with dual-core 2.6GHz AMD
Opteron CPUs, and 4GB memory per node, i.e., 2GB
per core, and runs Cray’s UNICOS/lc operating sys-
tem with the Catamount micro-kernel [7]. The oper-
ating system on the compute nodes is specially tuned
for scientific computing. To meet the scientific com-
putation performance requirements, the OS removed

Figure 3: DART compute node bootstrap mecha-
nisms.

some features such as the sockets interface, the TCP
and UDP transport protocols, the shared memory
support, or the multi-threading support. These tun-
ings impose additional constraints and challenges on
the implementation of a fast and asynchronous I/O
substrate. A service node has a 2.4 GHz single-core
AMD Opteron CPU with 4GB memory and runs a
full fledged Linux kernel.

XT4 is the newer version of the machine, and is
built up from compute nodes with quad-core 2.1GHz
AMD Opteron CPUs, and 8GB of memory per node,
i.e., 2GB per core, and runs Compute Node Linux
(CNL) operating system. CNL is a version of the
Linux kernel, that is customized for scientific com-
puting environments. In contrast with Catamount,
CNL scales better to quad-cores and adds support
for multi-threading, however it still does not provide
sockets interface or higher level transport protocols
such as TCP or UDP. The service nodes have 2.6GHz
dual-core AMD Opteron with 8GB of memory.

Jaguar’s compute and service nodes are intercon-
nected in a 3D Torus topology by Cray Seastar
routers through the proprietary HyperTransport in-
terconnection bus that is able to deliver a transfer
bandwidth of 6.4GB/s. The Jaguar service nodes
are connected to a remote cluster, i.e., Ewok, by a
5GB/s aggregated link. The Ewok cluster has 128
nodes, each having 2 Intel Xeon 3.4GHz CPUs and
4GB memory. The nodes are interconnected by an
InfiniBand switch through a 1GB/s link. In our im-
plementation, DARTClient runs on the Jaguar com-
pute nodes, DARTSServer runs on the service nodes
and DARTReceiver runs on the Ewok nodes.

3.2 Compute Node Bootstrap Mecha-
nism

On Cray XT3/XT4 machine, compute nodes commu-
nicate with service nodes using Portals RDMA calls.
Portals identifies each process in the system by a Por-
tals address, which is a tuple composed of a unique
numerical identifier for the node (compute or service)
and for the process, i.e., “nid” and “pid”. Two pro-
cesses in the system can communicate, if they know
each other Portals address.

To run a simulation job in the system, a user re-
quests a certain number of compute nodes for the
job. However, the specific nodes assigned to the sim-
ulation, and consequently their Portals addresses, are
determined only at runtime. The scientific codes run-
ning on the compute nodes and the streaming server
are two independent applications, and to enable them
to communicate over Portals and using RDMA calls,
we define a customized bootstrap mechanism that is
independent of the underlying execution mechanism
(e.g., MPI or the batch queuing system).

The architecture of our bootstrap mechanism re-
quires that the streaming server is running at the time
when the application starts, and relies on a shared
file-system between the nodes that run the instances
of the streaming server. The bootstrap mechanism
works as follows (see Fig. 3) the first instance of the
streaming server writes its Portals address (i.e., the
tuple “nid”, “pid”) to a persistent configuration file,
and also exports this values into environment vari-
ables. When the application initializes, DARTClient
parses the corresponding environment variables and
reads the Portals address of the streaming server. In
turn, DARTClient sends its own Portals address to
the streaming server. Note that this bootstrapping
approach allows the streaming server to restart, get
a different address and modify the configuration file
and the environment variables multiple times, before
the application starts on the compute nodes (which
happens after the application is launched through a
batch queuing system).

In case of multiple streaming server instances that
run on different nodes, the first server with the low-
est “nid” value acts as a master and locks and writes
the configuration file. The other streaming server in-
stances check the existence of the configuration file
and read the master instance Portals address, then
they register their own Portals addresses with the
master instance. During the application initialization
phase, the master server maps each compute node
to an instance of a streaming server via the boot-
strap process, and later the compute node forwards
all its requests to that instance of the server. In this

process, the master server uniformly distributes the
compute nodes across the streaming servers, so that
each server serves approximately the same number of
compute nodes.

In the implementation of DART described in this
paper, the initial mapping of compute nodes to
servers is preserved for the runtime of the applica-
tions. This is because the load on the servers is nat-
urally balanced due to the SPMD (single program
multiple data) nature of the applications. Coopera-
tive load balancing between streaming servers is used
in cases where this is not true (e.g., if local adaptivity
is used).

3.3 Data Transfer Protocol

As described in Section 2, DARTClient is lightweight
and implements the bare minimum functionality
so as to minimize its impact on the application.
Consequently, the DARTSServer implements all the
logic associated with scheduling, data extraction and
transfer. It does this using a two step protocol. In the
first step, the compute node posts a small “request for
send” notification message into the memory descrip-
tor of the streaming server instance it is associated
with. In the second step, the streaming server sched-
ules the request, extracts the data from the memory
of the compute node, and transfers the data to the
destination specified in the “request for send” notifi-
cation (i.e., remote node or local storage). Multiple
data notification requests from the same or multiple
compute nodes are serviced in a round robin fashion
according to the priorities of the requests.

(a) DART client.

(b) DART steaming server.

Figure 4: Timing diagrams illustrating the operation
of DARTClient and DARTSServer.

We illustrate the operation of DART on the Cray
XT3/XT4 system using timing diagrams presented in
Fig. 4. A usual run of a scientific application consists

of sequences of computations (identified by ct in the
Fig. 4(a)), followed by data transfer requests (iden-
tified by wt and rfst in the Figure). The data ex-
traction protocol is asynchronous, and once the com-
pute node sends a “request for send” notification (i.e.,
rfst), it can continue its computations without wait-
ing for the actual transfer to complete. Although
the data extraction may not start immediately, it can
proceed in parallel with the computation. A compute
node may block before sending the notification mes-
sage (i.e., wt), if the streaming server is busy and has
not yet processed a previous request from the that
compute node. The effective data transfer time at
the application level is the sum of wt and rfst times.

In Fig. 4(b), we present a timing diagram for the
transfer of a block of data from a compute node
to a remote node. In the Figure, “teb” is the time
the server takes for processing a notification message
from a compute node and scheduling the correspond-
ing data extraction, “tpb” is the time the server takes
for extracting the data from the compute node using
the Portals interface, and “tfb” is the time the server
takes to transfer the data to a remote node using the
TCP interface. The value of these parameters corre-
sponds to the processing time of the threads t1 + t2,
t3, and t4 as described in Section 2. The value for the
total I/O time equals the sum of these three values
plus some OS thread scheduling overheads.

4 Experimental Evaluation

We evaluate the performance of DART using two sets
of experiments. The first set evaluates the base per-
formance of DART using synthetic simulations. The
synthetic simulations follow the same computational
pattern as the real simulations, i.e., a set of one or
more computational stages followed by one I/O stage.
The experiments evaluate the core parameters that
influence data extraction rates from compute to ser-
vice nodes. This includes (1) the size of data unit
fetched, i.e., the block size, (2) the number of mem-
ory descriptors allocated at the service node, (3) the
frequency of data fetches, and (4) time required to
stream the data, i.e., the time to store the message
at the destination location.

The second set of experiments evaluates the per-
formance of DART when it is integrated with real
simulation codes, i.e., the GTC and XGC-1 fusion
simulations. The key metrics used in these experi-
ments are (1) the effective data transfer rate and (2)
the overhead of using DART on the performance of
the simulation.

 1134

 1136

 1138

 1140

 1142

 1144

 1146

 1148

 1150

 1152

 0 10 20 30 40 50 60 70 80 90 100

T
ra

n
s
fe

r
ra

te
 M

B
/s

Size of data unit transferred (MB)

Transfer BW

Figure 5: Data transfer rate between compute and
service nodes.

4.1 Data Transfer Rate

In this experiment, we test the maximum application-
level transfer rate that we can achieve between com-
pute and service nodes, using RDMA data transfers.

We set up this experiment using two compute
nodes and one service node, i.e., one streaming server
extracts data from a simulation running on two com-
pute nodes and measures the transfer rates. The
synthetic simulation used in this test has a compute
stage of 1 msec. This parameter however does not
not influence the transfer rates since we measure the
transfer times and sizes at the streaming server.

In this test we vary the size of the data unit (i.e.,
the block size) from 1 to 100MB in increments of
4MB, and measure the achieved transfer rate for each
value. We run the synthetic simulation for 100 itera-
tions, and perform 100 data transfers for each value
of the block size. We plot the average transfer rate
(over the 100 iterations) for each block size in Fig. 5.

The plot shows that we can saturate the communi-
cation link between compute and service nodes using
a minimum block size of 4MB. The saturation value is
achieved at application level, and represents the max-
imum remote memory to memory data transfer rate
that the system can effectively sustain. Note that we
use the gettimeofday() system call to measure the
transfer times, and as a result, the measured values
also include system operations such as OS process
scheduling, etc., which explains the variability in the
rates measurements.

4.2 Efficient Computations and
Transfers Overlapping

In this experiment we test the influence of the com-
pute stage duration and the frequency of I/O on the

efficiency of computation and data transfer overlap-
ping.

We set up the experiment using 128 compute nodes
running the synthetic simulation and sending data to
one instance of the streaming server. On the compute
node side, we use memory buffers of 4MB, and on the
streaming server side we use 128 memory descriptors
to ensure that we can fetch the memory buffers from
all the compute nodes in parallel. Also, we allocate
4MB of memory for each descriptor to match the size
of the memory buffer fetched. Further, the stream-
ing server transfers the data to a node on a remote
cluster. We varied the duration of the compute stage
for the synthetic simulation to control the frequency
of the I/O operations.

The results for two tests in this experiment are
presented below. The duration of the compute stages
for the synthetic simulation in these tests is selected
to demonstrate the effect of I/O frequency on the
application overhead, and on the ability to overlap
I/O with computations.

Note that the synthetic simulation posts the “re-
quest for send” notifications from all compute nodes
at the same time, while the streaming server processes
these notifications sequentially in round robin fash-
ion. The streaming server can service the i+1st noti-
fication request from a compute node only after it fin-
ishes serving all ith requests from the other compute
nodes. While serving a transfer request, the most
time consuming operation at the streaming server is
to stream the data to the remote location.

We derive the formula for the upper time value that
the server needs to service two consecutive requests
for the same compute node as tfb ∗N + tpb, where tfb

represents the time required to transfer the content
of a memory buffer to a node in the remote cluster
(Ewok), N is the number of compute nodes, and tpb

represents the additional time to process and fetch
the data from the compute node.Note that the value
for tpb is typically negligible as compared to tfb ∗ N .

Our goal is to try to find a good balance between
the duration of a compute stage and the data size
streamed, to better overlap computations with data
transfers.

In each of the tests, we measure the I/O time, the
wait time and the “request to send” time at the com-
pute nodes and the total I/O time for an operation
(from the “request to send” notification to the end of
streaming) at the streaming server.

In the first test we set the duration for the compute
stage to 2 sec. We choose this value based on previous
experiments to demonstrate the effects of poor over-
lap. The results from this test are plotted in Fig. 6(a)
(compute node) and Fig. 6(b) (streaming server). In

these plots, the x axis is the numerical identifier of
each compute node and the y axis is the cumulative
I/O time for 100 simulation iterations. The I/O time
on the compute nodes equals the sum of “request to
send” and wait times.

 0
 1
 2
 3
 4
 5
 6

 20 40 60 80 100 120

ti
m

e
(s

e
c
)

I/O time

 0
 1
 2
 3
 4
 5
 6

 20 40 60 80 100 120

ti
m

e
(s

e
c
)

Wait time

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 20 40 60 80 100 120

ti
m

e
(s

e
c
) Req to send time

(a) Cumulative I/O time at the compute nodes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120

ti
m

e
(s

e
c
)

total time

(b) Cumulative I/O time at the streaming server.

Figure 6: Overhead of DART on the application for
a compute phase of 2 sec.

The values for wait time and I/O time in Fig. 6(a)
are almost identical, and this indicates that the I/O
time is dominated by the wait time. A large value for
the wait time indicates that a notification operation
blocks, and waits for a previous operation to finish.
In this test, the duration for the compute stage is
small, and the frequency of I/O stages is higher than
the streaming server’s ability to transfer the fetched
data to the remote location (i.e., a node on the Ewok
cluster). As a result, the streaming server delays the
processing for the i + 1st notification from compute
nodes and this causes the large I/O time in Fig. 6(b).
The results of this test show that the overlap between
computations and the overhead of data extraction is
not optimal, as the wait time is very high on compute
nodes. The average I/O time difference for a memory

buffer transfer as measured on the streaming server
and on the compute nodes is 34 msec, and represents
the additional time the streaming server spends to
transfer the data from a compute note to the remote
node.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 20 40 60 80 100 120

ti
m

e
(s

e
c
) I/O time

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04

 20 40 60 80 100 120

ti
m

e
(s

e
c
) Wait time

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 20 40 60 80 100 120

ti
m

e
(s

e
c
) Req to send time

(a) Cumulative I/O time at the compute nodes.

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100 120

ti
m

e
(s

e
c
)

total time

(b) Cumulative I/O time at the streaming server.

Figure 7: Overhead of DART on the application for
a compute phase of 4.3 sec.

In the second test, we set the duration for the
compute stage based on the upper limit formula
tfb ∗ N + tpb established above and the results from
the previous test to be 4.3 sec, where tfb = 34 msec,
N = 128, and we neglected the tpb term. The rest of
the setup and parameters remain the same.

The results of the test are plotted in Fig. 7(a) for
the compute node and in Fig. 7(b) for the stream-
ing server. Again, in these plots the x axis is the
numerical identifier of each compute node and the y

axis is the cumulative I/O time for 100 simulation
iterations. The value for the wait time in this case,
is very small (5 msec), indicating that the i + 1st

fetch operation from a compute node can proceed al-
most immediately, without having to wait for the ith

transfer to finish. These results demonstrate an ef-
ficient overlap of simulation computations with data

extractions, resulting in very low I/O overhead on the
simulation.

These experiments demonstrate that the data
transfer latency and the simulation overhead depend
very strongly on the duration of the computation
stage (i.e., the frequency of I/O operations) and the
size of the data blocks. We would like to men-
tion that we can not always directly control
and tune these parameters for the best results,
e.g., in real scientific codes the physicists do
not have precise mechanisms to set the values
for these parameters, nor do they have the
knowledge to do so. However, we believe that
understanding the parameters that influence
a data transfer allows us at least to increase
the number of streaming server instances that
service the I/O requests of an application and
keep a low I/O overhead on the application.

4.3 Integration with Simulation
Codes

In the second set of experiments, we test the addi-
tional overhead that DART operations impose on a
simulation running on the compute nodes, and ex-
press the overhead as a percentage of the time the
simulation spends in its compute stages. For these
experiments, we integrate DART with real scientific
application codes and analyze its performance using
multiple criteria. First, we analyze the throughput
of the streaming server on both, the Portals (com-
pute nodes to streaming server) and TCP (streaming
server to remote node) interfaces; second, we analyze
the I/O overhead on the simulation, and third, we
analyze the scalability of DART.

Integration with GTC: In this set of experi-
ments, we use the Gyrokinetic Toroidal Code (GTC)
simulation. GTC is a highly accurate fusion model-
ing code that performs a highly complex analysis of
non linear dynamics of plasma turbulence by using
numerical simulations, and requires very-large scale
computing capabilities. We couple DART with the
GTC code and vary simulation parameters in the
runs described below. The key GTC parameters that
influence the size of the data generated and the fre-
quency of I/O are micell, mecell, which determine the
size of the global particle domain, npartdom, which
determines the number of particle sub-domains, and
msnap, which determines the frequency of I/O, i.e.,
the number of restart file produced.

To test the scalability of DART, we run the GTC
simulation on 1024 and 2048 compute nodes. For
the test on 1024 compute nodes, we set the micell

and mecell parameters to 160, npartdom to 16, and

msnap to 13. With these parameter values, the GTC
code generates a checkpoint of 40MB every 13 simula-
tion iterations. Each simulation iteration takes 8 sec,
and the simulation runs for 200 iterations. Propor-
tionately, for the test on 2048 compute nodes, we set
the micell and mecell parameters to 160, npartdom

to 32, and msnap to 26, and ran the GTC code for 400
iterations. Using these parameters, the GTC code
generates a checkpoint of 40MB every 26 simulation
iterations, and each iteration takes 8 sec. In these
experiments, we run the streaming server on a dedi-
cated service node (i.e., no other users or I/O services
are running on the same node). To analyze the per-
formance of DART, we measure the wait and I/O
times at the simulation level for each of the compute
nodes, and the throughput obtained on both Portals
and TCP interfaces at the streaming server. During
these experiments, the remote receiver receives the
data from the streaming server, but does not perform
any processing on the data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

%
 o

f
ti
m

e
 s

p
e
n
t
in

 I
/O

compute node id

I/O time
Wait time

(a) I/O overhead on the GTC code on 1024 nodes.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000

%
 o

f
ti
m

e
 s

p
e
n
t
in

 I
/O

compute node id

I/O time
Wait time

(b) I/O overhead on the GTC code on 2048 nodes.

Figure 8: Percentage of I/O and wait time overhead
on the GTC simulation measured at the compute
nodes.

The I/O overhead on the GTC application caused
by DART data extraction and streaming is plotted in
Fig. 8 as a percentage of the time taken by the com-
pute stages. The x axis in these plots is a numerical
identifier for each compute node, and the y axis is the
overhead measured at each node of the simulation.

In Fig. 8(a), the average value of the percentage
wait time across the 1024 nodes is < 0.15%, which in-
dicates that DART is able to efficiently overlap com-
putations with data extraction and transport. Fur-
ther, the average value of the I/O time is < 0.65%,
i.e., the overhead on the simulation is very small. In
Fig. 8(b) the average value for the I/O time for 2048
nodes is still small at < 0.4%. However the differ-
ence between the I/O and wait time percentages is
much smaller than in the 1024 case, indicating that
the streaming server is reaching the limit for the max-
imum number of compute nodes it can service simul-
taneously. The average value for the percentage over-
head for the test on 2048 nodes is smaller than that
for the test on 1024 nodes because the GTC code
is generating the same amount of data for its check-
points, but the length of computing stage is doubled.

Fig. 9 plots the cumulative I/O times at the
streaming server for (1) extracting the checkpoint
from the simulation using the Portals interface, and
(2) to transport the data to a remote node using TCP
interface, for each compute node over the runtime of
the simulation. In these plots, the x axis is a nu-
merical identifier for each compute node and the y

axis is the cumulative I/O time. As expected, the
transfer times for the Portals interface are smaller.
The corresponding values for the transfer time (both
Portals and TCP) are similar for the two cases (1024
and 2048 compute nodes), because the buffers that
the streaming server allocates for communication are
filled to capacity throughout the tests.

Before running these tests, we measured the link
throughput between the streaming server and the re-
mote node using the TCP transport protocol, and
the peak measured value was 5.01 Gbps. In Fig. 10,
we plot the throughput achieved using DART at the
streaming server on both, the Portals and TCP in-
terfaces. In this plot, the x axis is the runtime of the
simulation, and the y axis is the throughput as a per-
centage of the peak value. In both, the 1024 and 2048
node tests, we achieve on the TCP interface an av-
erage sustained throughput of 60% of the peak TCP
throughput. The rest of the time at the streaming
server is spent on Portals transfers and the scheduling
of the extract operations. The average throughput on
the Portals interface is comparable to the value of the
TCP interface, i.e., 60%, which is expected since the
communication buffer at the streaming server is fully

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

ti
m

e
(s

e
c
)

compute node id

Portals Interface

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

ti
m

e
(s

e
c
)

compute node id

TCP Interface

(a) Cumulative I/O time at the streaming server servicing
1024 compute nodes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000

ti
m

e
(s

e
c
)

compute node id

Portals Interface

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

ti
m

e
(s

e
c
)

compute node id

TCP Interface

(b) Cumulative I/O time at the streaming server servicing
2048 compute nodes.

Figure 9: Cumulative I/O time times for the GTC
simulation measured at the DART streaming server.

utilized and becomes the bottleneck. From Fig. 9(a)
we see that TCP transport is slower than Portals, but
as the two transports share the same communication
buffer at the streaming server, the Portals through-
put adapts to the slower link.

To summarize, in the experiment on 1024 com-
pute nodes, the simulation ran for 1500 sec and each
node generated 550MB of data, resulting in a total
of 555GB across the system. The overhead on the
simulation was less then 0.7%. In the experiment on
2048 compute nodes, the simulation ran for 3000 sec,
with each node generating 550MB of data for a total
of 1.2TB across the system and the overhead on the
simulation of 0.4%.

Integration with XGC-1: We have also inte-
grated DART with the XGC-1 [3] simulation. XGC-
1 is a edge turbulence particle-in-cell code, that uses
numerical models to simulate a 2D dimensional den-
sity, the temperature, the bootstrap current and the
viscosity profiles in accordance with neoclassical tur-

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

%
 o

f
T

C
P

 p
e
a
k
 t
h
ro

u
g
h
p
u
t

time (sec)

Portals Interface

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

%
 o

f
T

C
P

 p
e
a
k
 t
h
ro

u
g
h
p
u
t

time (sec)

TCP Interface

(a) DART streaming server servicing 1024 compute nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

%
 o

f
T

C
P

 p
e
a
k
 t
h
ro

u
g
h
p
u
t

time (sec)

Portals Interface

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

%
 o

f
T

C
P

 p
e
a
k
 t
h
ro

u
g
h
p
u
t

time (sec)

TCP Interface

(b) DART streaming server servicing 2048 compute nodes.

Figure 10: Throughput at the DART server using
Portals (compute nodes to service node) and TCP
(service node to remote node).

bulent transport.

In our experiments with XGC-1, we used 1024 com-
pute nodes and one instance of the streaming server.
The server allocates the same set of resources as in
the GTC case. We set up the XGC-1 simulation to
run for 100 iterations, and to produce a checkpoint
every 20 iterations. One application iteration takes
30 sec to complete, and a checkpoint is 76 MB in
size for a simulation with 1 million particles. The be-
havior and performance of DART observed in these
experiments was similar to that described above for
GTC. The XGC-1 simulation ran for 3020 sec, and
each node generated 760MB of data, resulting in a
total of 380GB of data across the system. The over-
heads on the simulation due to DART operations was
< 0.3% of the simulation compute time. An aver-
age sustained throughput of 60% of the peak TCP
throughput was achieved between streaming server
and remote node.

Figure 11: Staging nodes execution flow

4.4 Staging Nodes

In the experiments presented so far, we used a sin-
gle instance of the DARTSServer, which streamed
the data to a DARTReceiver instance that was run-
ning on a node on a remote cluster. The DARTRe-
ceiver instance received the data and then dumped it.
In this experiment we use multiple instances of the
DARTSServer and we run them in cooperative mode
to save data from the application to a local storage
system for later use, e.g., for the application restart.
As we use multiple server instances, we also increase
the number of compute nodes that we use to run the
application on. In this experiment we analyze the
scalability of DART on a larger number of compute
nodes, i.e., the server component behavior as well as
the client layer, and the overhead that DART imposes
on the running simulation.

For the setup of this experiment we use again the
GTC scientific simulation, and we run it on 8192 com-
pute nodes. The GTC application compute the nu-
merical models for the plasma turbulence, and at reg-
ular timesteps streams its new state, i.e., information
about particles, through DART. We tuned the input
parameters for the simulation to resemble the behav-
ior of a production run, i.e., to produce a check-point
file of XMB every X simulation timesteps. Specifi-
cally, we set the micell to X, mecell to X, npartdom

to X, mzetamax to X, and nphi to X.

On the server side we use 8 DARTSServer instances
that service the notification requests from the com-
pute node, extract the data and save it to local stor-
age. The number of dedicated service nodes that
are publicly available is reduced. Moreover, they
are shared between various user jobs, e.g., applica-
tion compiling, data archiving, and can impose heavy
loads on the system, and thus can impact negatively
the performance of the streaming server. To alleviate

these problems, we use staging nodes to run the in-
stances of the DARTSServer. The staging nodes are a
sub-partition of the application compute nodes, that
we use exclusively for running the server. We can
view the DARTSServer instances as a smaller task in
the system, in addition to the GTC simulation.

We present the data flow overview for this set-up
in Fig. 11. Multiple compute nodes of the application
can write to the same file, yet they may be associated
with a different server instance. To keep the con-
tent of the file coherent, the DARTClient layer on the
compute nodes coordinate among the nodes and de-
termine the proper offset that each node should write
at. The numbers at the top of the figure represents a
possible sequence of notification posts to the stream-
ing server, and the numbers at the bottom of the
figure represents a possible sequence of data extrac-
tion and save to the local store. The two sequences
are different, but the resulting file is coherent with
the compute nodes as a result of the coordination at
the DARTClient layer. The DARTSServer instances
do not have to coordinate between themselves while
writing the to resulting file, because each notification
message contains a unique offset for the data block of
the corresponding compute node. Implementing the
offset coordination function in the DARTClient layer
has several advantages over the streaming server, and
these include (1) the application on the compute
nodes is a SPMD program that executes in incre-
mental time steps and all the processes will reach the
streaming stage at about the same time, (2) notifica-
tion messages are self-contained and if a data transfer
has an error, they allow both the application and the
streaming servers to continue execution, and (3) the
streaming servers can schedule and extract data from
compute nodes independently and can achieve a bet-
ter throughput.

When a user runs a job in the system, he first
submits a script describing the job to the queuing
system, and then the queuing system schedules and
runs the job. Depending on the configuration of the
scheduling policy and the number of requests, the sys-
tem may run smaller jobs more frequently than larger
ones. This impose an extra challenge to our staging
nodes approach, because we need to synchronize the
two jobs to execute at the same time. Our solution
to this problem is to combine the two jobs, i.e., the
DARTSServer instances and the GTC application, in
a single job script that contains two sub-jobs. In the
job script file, we first run the streaming server sub-
job and put the process in the background, and then
we run the application sub-job, and at the end of
the job execution we wait for both of the sub-jobs to
finish.

present and discuss the results ...

5 Related Work

Related research efforts addressing data I/O issues for
large scale parallel applications include parallel file
systems such as Lustre [6] and GPFS [8], parallel file
I/O infrastructures such as MPI-IO and ROMIO [15],
and asynchronous data I/O and streaming infrastruc-
tures such as PDIO [13], LIVE/PBIO [4] and DART.
Since PDIO and PBIO and most closely related to
DART, they are discussed in more detail in this sec-
tion.

The LIVE Data Workspace project [4] at Georgia
Tech and the underlying PBIO layer, has similar over-
all goals as DART. However, there are several differ-
ence in the design and the two systems make different
tradeoffs. The focus of PBIO is on reconfigurability
and the ad hoc connections of components without
a priori knowledge of data requirements. PBIO also
supports multiple transports including Portals and
Inifinband. DART, in contrast, is more lightweight
and is specifically tuned for low latency low overhead
streaming, and was is found to perform faster in the
tests conducted at the Oak Ridge National Labs.

PDIO [13] is a related effort, and is specially de-
signed to support runtime visualization of data from
parallel simulations. It tries to virtually extend the
file-system of Portals-enabled compute nodes to arbi-
trary destination locations. Unlike DART, the design
of PDIO is tightly coupled to the requirements of its
target applications.

Asynchronous I/O API (ADIOS API) is a recent
effort that aims to provide a simple I/O interface ca-
pable of integrating with a variety of data transport
layers, both synchronous and asynchronous. The goal
of ADIOS is to provide an interface nearly as simple
as standard Fortran I/O statements, while giving ac-
cess to the power and flexibility of mature systems
such as MPI-I/O, HDF-5 [5], parallel netCDF [12],
standard POSIX calls, as well as more experimental
systems such as DART and the Georgia Tech LIVE
system. Additionally, the data is encoded in a tagged,
binary format with data and grouping attributes for
easier data use without the overhead of a plain text
data format. The system consists of three parts: (1)
the API that was designed primarily for Fortan use,
but also tested with C, (2) an XML configuration
file describing the data types, attributes, data trans-
ports, and buffer specifications selection, and (3) the
data transport layer, e.g., DART.

The idea of asynchronous calls by overlap-
ping computation with I/O data transfers was

explored in other projects as well, e.g., Kan-
garoo [14]. However, the focus of the Kanga-
roo project was to improve application relia-
bility, while the overhead on the application
was not a concern. Moreover, Kangaroo and
other similar projects implement this idea in
a multithreaded environment where the ap-
plication thread can make progress while the
streaming thread blocks. Our system can run
in single-threaded environments, e.g., HPC re-
sources tuned for scientific computing, and a
data transfer does not block the running ap-
plication.

The DAFS [11] project is a file system im-
plementation in user space, that provide ac-
cess to remote file systems using RDMA data
transfers. DAFS has a similar approach of
providing asynchronous calls to the applica-
tion layer, e.g., it provide the abstraction of
a mounted file system which is accessed with
RDMA calls. Our approach is simpler, as it
does not implement the complete file API, and
provides several advantages because of this (1)
it has a reduction factor in the number of
clients accessing the file system at the same
time, and this reduces the concurrency on the
metadata server, and further (2) the stream-
ing servers can cache and share a file descrip-
tor, and thus a connection to remote file for
multiple compute nodes.

6 Conclusions

In this paper we demonstrated that the DART data
transfer substrate can be effectively used to address
the growing data transport requirements of large
scale parallel simulations on current HPC systems.
DART is built on the RDMA technology, and en-
ables fast, low-overhead and asynchronous access to
data from a running simulation, and supports high-
throughput, low-latency data transfers. DART pro-
vides an asynchronous transfer API for sin-
gle threaded environments that are common
on HPC resources tuned for scientific comput-
ing. We presented the design of DART as well as its
implementation on the Cray XT3/XT4 system us-
ing the Portals RDMA framework, and an evaluation
using the GTC and XGC-1 simulations from the Cen-
ter for Plasma Edge Simulation FSP. The evaluation
demonstrated that DART can saturate the SeaStar
link between compute and service nodes with 4MB
or larger messages. The results also demonstrated
that the overhead of DART on the application was a

very small percentage of the computation time. Ex-
periments with DART integrated with the GTC sim-
ulation also demonstrated scalability, low overheads,
low latency and high throughput.

Current and future research efforts include exper-
imenting with other application codes, building an
end-to-end code-coupling layer on top of DART, and
porting DART to other RDMA platforms such as the
BlueGene/P and Infiniband.

References

[1] http://info.nccs.gov/resources/jaguar.

[2] Ron Brightwell, Trammell Hudson, Kevin Pe-
dretti, Rolf Riesen, and Keith Underwood. Im-
plementation and Performance of Portals 3.3 on
the Cray XT3. IEEE International Conference
on Cluster Computing, September 2005.

[3] C.S. Chang, S. Ku, and H. Weitzner. Numer-
ical study of neoclassical plasma pedestal in a
tokamak geometry. volume 11, pages 2649–2667,
2004.

[4] Karsten Schwan Hasan Abbasi, Matthew Wolf.
Live data workspace: A flexible, dynamic and
extensible platform for petascale applications.
In Cluster Computing, Austin, TX, September
2007. IEEE International.

[5] HDF-5. http://hdf.ncsa.uiuc.edu/pro-
ducts/hdf5/index.html.

[6] Cluster File Systems Inc. Lustre: A
Scalable, High Performance File System.
http://lustre.org/docs/whitepaper.pdf.

[7] Cray Inc. Cray XT3tm Sytem Overview. Tech-
nical Report S-2423-13, November 2005.

[8] IBM Inc. Gpfs: A Shared-Disk File
System for Large Computing Clusters.
www.almaden.ibm.com/StorageSystems/projects/gpfs/Fast02.pdf.

[9] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. Mc-
Cune, and R. Samtaney. Grid-Based Parallel
Data Streaming implemented for the Gyroki-
netic Toroidal Code. November 2003.

[10] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang,
and R. B. White. Turbulent transport reduction
by zonal flows: Massive parallel simulations. Sci-
ence, 281(5384):1835–1837, 1998.

[11] Kostas Magoutis, Salimah Addetia, Alexandra
Fedorova, Margo I. Seltzer, Jeffrey S. Chase, An-
drew J. Gallatin, Richard Kisley, Rajiv G. Wick-
remesinghe, and Eran Gabber. Structure and
Performance of the Direct Access File System.
In Proc. of USENIX Annual Technical Confer-
ence, June 2002.

[12] Parallel netCDF.
http://trac.mcs.anl.gov/projects/parallel-
netcdf.

[13] Nathan Stone, Doug Balog, Bryon Gill, Brian
Johanson, Jim Marsteller, Paul Nowoczynski,
David Porter, Raghurama Reddy, J. Ray Scott,
Derek Simmel, Jason Sommerfield, Katie Vargo,
and Chad Vizino. Pdio: High-performance re-
mote file i/o for portals-enabled compute nodes.
In Hamid R. Arabnia, editor, PDPTA, pages
925–930. CSREA Press, 2006.

[14] D. Thain, J. Basney, Se-Chang Son, and
M. Livny. The Kangaroo approach to data
movement on the Grid. In Proc. of 10th IEEE
International Symposium on High Performance
Distributed Computing (HPDC), pages 325–333,
August 2004.

[15] Rajeev Thakur, William Gropp, and Ewing
Lusk. Data sieving and collective I/O in
ROMIO. In Proceedings of the Seventh Sym-
posium on the Frontiers of Massively Parallel
Computation, pages 182–189. IEEE Computer
Society Press, 1999.

http://info.nccs.gov/resources/jaguar
http://lustre.org/docs/whitepaper.pdf
www.almaden.ibm.com/StorageSystems/projects/gpfs/Fast02.pdf

	Introduction
	DART Architecture and Operation
	RDMA Technology
	The DART Client Layer
	The DART Streaming Server and Receiver
	DART API and Usage

	Implementation of DART on the Cray XT3/XT4
	System Description
	Compute Node Bootstrap Mechanism
	Data Transfer Protocol

	Experimental Evaluation
	Data Transfer Rate
	Efficient Computations and Transfers Overlapping
	Integration with Simulation Codes
	Staging Nodes

	Related Work
	Conclusions

