
PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

An Application-Centric Characterization of Distribution Techniques for
Dynamic Adaptive Grid Hierarchies

Samip Bhavsar, Mausumi Shee, and Manish Parashar
Department of Electrical and Computer Engineering , Rutgers University, 94 Brett Road, Piscataway, NJ 08854

Tel: (732) 445-5388; Fax: (732) 445-0593; Email: {samip,mshee,parashar}@caip.rutgers.edu

Abstract

Dynamically adaptive methods for the solution of
partial differential equations that employ locally
optimal approximations can yield highly
advantageous ratios for cost/accuracy. Distributed
implementations of these methods offer the potential
for accurate solution of physically realistic models of
important physical systems. These implementations
however, lead to interesting challenges in dynamic
data-distribution and load balancing. This paper
presents ongoing work on characterizing the
performance of dynamic partitioning and load-
balancing techniques for distributed adaptive grid
hierarchies that underlie adaptive mesh-refinement
algorithms (AMR). The overall goal of this
characterization is to enable the selection of the most
appropriate mechanism based on application and
system parameters.
Keywords: Dynamic load balancing; Performance
characterization; Adaptive mesh refinement.

1. Introduction
This paper presents ongoing work on the

performance characterization of dynamic
partitioning and load-balancing techniques for
distributed adaptive grid hierarchies that
underlie parallel adaptive mesh-refinement
(AMR) techniques for the solution of partial-
differential equations. The overall goal of this
characterization is to enable the selection of the
most appropriate mechanism and based on
application and system parameters.

Dynamically adaptive methods for the
solution of partial differential equations that
employ locally optimal approximations can yield
highly advantageous ratios for cost/accuracy
when compared to methods based upon static
uniform approximations. These techniques seek
to improve the accuracy of the solution by
dynamically refining the computational grid in
regions of high local solution error. Distributed
implementations of these methods offer the
potential for accurate solution of physically

realistic models of important physical systems.
We believe that the next generation simulations
of complex physical phenomenon will be built
on top such dynamically adaptive techniques
executing on dynamic and heterogeneous
computational grids, and will provide dramatic
insights into complex systems such as
interacting black holes and neutron stars,
formations of galaxies, oil reservoirs and
aquifers, and seismic models of the whole earth.

Distributed implementations of adaptive
applications lead to interesting challenges in
dynamic resource allocation, data-distribution
and load balancing, communications and
coordination, and resource management. The
overall efficiency of the algorithms is limited by
the ability to partition the underlying data-
structures at run-time so as to expose all inherent
parallelism, minimize communication and
synchronization overheads, and balance load. A
critical requirement while partitioning adaptive
grid hierarchies is the maintenance of logical
locality, both across different levels of the
hierarchy under expansion and contraction of the
adaptive grid structure, and within partitions of
grids at all levels when they are decomposed and
mapped across processors. The former enables
efficient computational access to the grids while
the latter minimizes the total communication and
synchronization overheads. Furthermore
application adaptivity results in application grids
being created, moved and deleted on the fly,
making it is necessary to efficiently re-partition
the hierarchy on the fly so that it continues to
meet these goals.

This paper first defines an application-centric
performance characterization of distribution
mechanism for AMR grid hierarchies. It then
uses it to characterize the performance of a suite
partitioning and load-balancing mechanisms
used by distributed AMR infrastructures.

2. Problem Description

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

Figure 1 - Adaptive Grid Hierarchy - 2D (Berger-
Oliger AMR Scheme)

Dynamically adaptive numerical techniques
for solving differential equations provide a
means for concentrating computational effort to
appropriate regions in the computational
domain. In the case of hierarchical adaptive
mesh refinement (AMR) methods, this is
achieved by tracking regions in the domain that
require additional resolution and dynamically
overlaying finer grids over these regions. AMR-
based techniques start with a base coarse grid
with minimum acceptable resolution that covers
the entire computational domain. As the solution
progresses, regions in the domain requiring
additional resolution are tagged and finer grids
are over laid on the tagged regions of the coarse
grid. Refinement proceeds recursively so that
regions on the finer grid requiring more
resolution are similarly tagged and even finer
grids are overlaid on these regions. The resulting
grid structure is a dynamic adaptive grid
hierarchy. The adaptive grid hierarchy
corresponding to the AMR formulation by
Marsha Berger and Joseph Oliger is shown in
Figure 1.

Distribution of adaptive methods based on
hierarchical AMR consists of appropriately
partitioning the adaptive grid hierarchy across
available computing nodes, and concurrently
operating on the local portions of this domain.
Parallel AMR applications require two primary
types of communication: (a) Inter-grid
Communications: Inter-grid Communications
are defined between component grids at
different levels of the grid-hierarchy and consist
of prolongations (coarse to fine transfers) and
restrictions (fine to coarse transfers). These
communications typically require a
gather/scatter type operations based on an
interpolation or averaging stencil. Inter-grid

communications can lead to serialization
bottlenecks for naïve decompositions of the grid
hierarchy. (b) Intra-grid Communications: Intra-
grid Communications are required to update the
grid-elements along the boundaries of local
portions of a distributed grid. These
communications consist of near-neighbor
exchanges on the stencil defined by the
difference operator. Intra-grid communications
are regular and can be scheduled so as to overlap
with computations on the interior region of the
local portions of a distributed grid. Note that on
the same processor, these communications
translate to memory copies. Key requirements
for a decomposition scheme used to partition the
adaptive grid hierarchy across processors can be
summarized as: (1) expose available data-
parallelism (2) minimize communication
overheads (3) balance overall load distribution
and (4) enable dynamic load redistribution with
minimum overheads. A balanced load
distribution and efficient re-distribution is
particularly critical for parallel AMR based
applications as different levels of the hierarchy
have different computational loads. The AMR
scheme for time dependent applications have
large number of grid elements, which are
frequently updated, which makes efficient
dynamic re-distribution difficult.

3. Parallel/Distributed AMR
Infrastructures

There already exists wide spectrum of
software systems that support parallel and
distributed implementations of AMR
applications. Five such infrastructures are
introduced below. Each system represents a
unique combination of design decisions in terms
of algorithms, data-structures, decomposition,
mapping and distribution mechanism, and
communication mechanism. In this paper we
characterize the partitioning and load-balancing
schemes that underlie these infrastructures.

BATSRUS [1] is implemented in
FORTRAN90, using a block-based domain-
decomposition approach. Blocks of cell (stored
as 3D F90 arrays) are locally stored on each
processor so as to achieve a reasonable balanced
load. The application starts out with a pool of
processors, some of which are possibly unused.
Every utilized processor has a block of equal
memory size, but possibly at a different
resolution and/or a different sized partition of
physical space. As the application adapts and

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

new (adapted) grids are created, these are
allocated, in units of the same fixed block size to
the unused processors. No more refinement can
occur once all the virtual processors are used up.

PARAMESH [7] is another FORTRAN 90
package designed to provide an application
developer with an easy route to extend an
existing serial code which uses a logically
cartesian structured mesh into a parallel code
with adaptive mesh refinement (AMR). The
PARAMESH distribution strategy is based on
partitioning a hierarchical tree representation of
the adaptive grid structure.

SCOREC Parallel Mesh Databases (PMDB)
[6] provides a generic mesh database for the
topological, geometric and classification
information that describes a finite element mesh.
The database supports meshes of non-manifold
models and multiple meshes on a single model
or multiple models. Operators are provided to
retrieve, store and modify the information stored
in the database. PMDB provides three static
partitioning procedures for initial mesh
distribution, three dynamic load-balancing
schemes and mesh migration operators.

SAMRAI [7] is an object-oriented
framework that provides computational
scientists with general and extensible software
support for the prototyping and development of
parallel structured adaptive mesh refinement
applications. SAMRAI makes extensive use of
object-oriented techniques and various design
patterns, such as Abstract Factory, Strategy, and
Chain of Responsibility.

 DAGH [2] is an object-oriented toolkit for
the development of parallel and distributed
applications based on a family of adaptive mesh-
refinement and multigrid techniques. DAGH is
built on a �semantically specialized� distributed
shared memory substrate that implements a
hierarchical distributed dynamic array (HDDA)
[5][4]. HDDA provides uniform array access to
heterogeneous dynamic objects spanning
distributed address spaces and multiple storage
types. Communication, synchronization and
consistency of HDDA objects are transparently
managed for the user. Distribution of the HDDA
is achieved by partitioning its array index space
across the processors. The index-space is
directly derived from the application domain,
using locality preserving space-filling mapping.

4. A Characterization of AMR
Distribution Mechanisms

 We use four criteria to characterize
distribution mechanism for AMR adaptive grid
hierarchies, viz. load balance, distribution
quality, grid interaction overheads (inter-
processor communication and memory copy),
and data-movement overheads. These criteria
are described below.
4.1. Load Balance

The load balance metric measures a
combination of the distribution of load across
the processors, the time taken to achieve the
distribution. AMR applications require re-
distribution and load balancing at regular
intervals; consequently the time spent in this
effort is critical. The goal of this metric is to
define operational points that represent the best
balance between the effort spent in balancing the
load and the balance achieved. In this paper we
only address the quality of the load-balance and
not the effort required.
4.2. Distribution Quality

Distribution quality is quantified by the
number of grid components created on each
processors and the quality (size, aspect ratio) of
these components. The former captures the
overheads due to the allocation, operation, and
management and de-allocation of grid
components. Large number of small grid
increases the number of memory copies required
for inter-level and intra-level communications.
The size and shape of the grids also effects the
communication/memory copy behavior. Bad
aspect ratios result in larger interfaces between
sibling grids and increased intra-level
communications. Finally grid size also effects
the overall cache behavior. Our goal is to use
this metric to determine an acceptable range for
the shape and size of grid components for
different architectures, and use this to drive the
distribution. In this paper we evaluate the
number of boxes for each scheme studied.
4.3. Grid Interaction Overheads

The grid interaction overhead metric aims at
characterizing the ability of the distribution
scheme to capture and maintain application
locality. Here we measure the overheads of four
kinds of communications: inter-grid
communications between grids at different
levels, intra-Grid communication along ghost
boundaries, and inter- and intra grid memory
copies for co-located grid components.

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

Maintaining locality to minimize these
overheads can lead to conflicting optimizations.
The objective of this metric is to identify a
balance between the two overheads based on
system memory architecture and communication
characteristics, that can achieve best overall
performance.
4.4. Data Movement

Every refinement step in the AMR
algorithms typically causes the adaptive grid
hierarchy to change requiring redistribution. The
redistribution should be incremental so as to
minimize the data that has to be relocated. The
objective of the data movement metric is to
characterize the ability of the distribution
scheme to minimize redistribution costs by
reassigning grids to their original location.
Optimizing this metric can lead to conflicts with
requirements for optimizing load balancing and
interaction overheads.

5. Run-Time Partitioning Dynamic
AMR Grid Hierarchies

The section describes the six dynamic
partitioning and load balancing schemes that we
have implemented and evaluated in this paper.
These schemes encapsulate key ideas underlying
the approaches used by the AMR infrastructures
described in Section 3.
5.1. Space-Filling Curves

Figure 2 - Space-Filling Curve Representation of
an Adaptive Grid Hierarchy

Space-filling curves (SFC) [3] are a class of
locality preserving mappings from d-
dimensional space to 1-dimensional space i.e.,
Nd ! N1, such that each point in Nd is mapped
to a unique point or index in N1. The self-similar
or recursive nature of these mappings can be
exploited to represent a hierarchical structure
and to maintain locality across different levels of
hierarchy. The SFC representation of the
adaptive grid hierarchy is a 1-D ordered list of
composite grid blocks where each composite
block represents a block of the entire grid
hierarchy and may contain more than one grid

level; i.e. inter-level locality is maintained
within each composite block. Figure 2 illustrates
the composite representation for a two
dimensional grid hierarchy. Using the space-
filling curve representation, the adaptive grid
hierarchy can be simply partitioned by
partitioning the composite list to balance the
total work assigned to each processor. This
decomposition using the Peano-Hilbert space-
filling ordering for a 1-D grid hierarchy is
shown in Figure 3. As inter-level locality is
inherently maintained by the composite
representation, the decomposition generated by
partitioning this representation eliminates
expensive gather/scatter communication and
allows prolongation and restriction operations to
be performed locally at each processor.

Figure 3 - Space-Filling (Composite) Distribution

5.2. Independent Grid Distribution

Figure 4 - Independent Grid Distribution

The independent grid distribution (IGD)
scheme, shown in Figure 4, distributes the grids
independently across the processors. This
distribution leads to balanced loads and no
redistribution is required when grids are created
or deleted. However the decomposition scheme
can be very inefficient with regard to inter-grid
communication. In the adaptive grid hierarchy, a
fine grid typically corresponds to a small region
of the underlying coarse grid. If both, the fine
and coarse grid are distributed over the entire set
of processors, all the processors will

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

communicate with the small set of processors
corresponding to the associated coarse grid
region, thereby causing a serialization
bottleneck. For example, a restriction from grid
G22 to grid G11 requires all the processors to
communicate with processor P3.
5.3. Combined Grid Distribution

Figure 5 - Combined Grid Distribution

The combined grid distribution (CGD),
shown in Figure 5, distributes the total work
load in the grid hierarchy by first forming a
simple linear structure by abutting grids at a
level and then decomposing this structure into
partitions of equal load. The combined
decomposition scheme also suffers from the
serialization bottleneck described above but to a
lesser extent. For example, in Figure, G21 and
G22 update G11 requiring P2 and P3 to
communicate with P1 for every restriction.
Regriding operations involving the creation or
deletion of a grid are extremely expensive in this
case, as they require an almost complete
redistribution of the grid hierarchy. The
combined grid decomposition does not exploit
the parallelism available within a level of the
hierarchy. For example, when G01 is being
updated, processors P2 and P3 are idle and P1
has only a small amount of work. Similarly
when updating grids at level 1 (G11, G12 and
G13) processors P0 and P3 are idle, and when
updating grids at level 2 (G21, G22 and G23)
processors P0 and P1 are idle.
5.4. Independent Level Distribution

In the independent level distribution (ILD)
scheme (see Figure 6), each level of the adaptive
grid hierarchy is individually distributed by
partitioning the combined load of all component
grids at the level is distributed among the
processors. This scheme overcomes some of the
drawbacks of the independent grid distribution.
Parallelism within a level of the hierarchy is
exploited. Although the inter-grid

communication bottleneck is reduced in this
case, the required gather/scatter communications
can be expensive. Creation or deletion of
component grids at any level requires a re-
distribution of the entire level.

Figure 6 - Independent Level Distribution

5.5. Iterative Tree balancing

Figure 7 - Iterative Tree Balancing

The iterative tree balancing (ITB) scheme
(see Figure 7) treats the dynamic partitioning
and load-balancing problem as a graph-
partitioning problem. A table is created from the
grids at each timestep, which keeps pointers to
neighboring and parent grids. A breadth first
search is made on this graph i.e. for every grid
immediate neighbors and children are also
considered along with load distribution. Thus
load balancing, inter level communication and
intra level communication are addressed
together. This scheme is promising from the
point of view that all the constraints are dealt
with to some extent.
5.6. Weighted Distribution

The weighted distribution scheme is a
heuristic based hybrid scheme that attempts to
combine the features of the other schemes
described in this section. As previously
observed, there are three primary parameters that

P1 P2
P

P4

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

need to be controlled to minimize the overheads
of an adaptive grid hierarchy distribution, viz.
intra-level communication, inter-level
communication and data movement at each
regrid. In the weighted distribution we first
assign a weight to each of these overheads. This
weight defines the significance and contribution
of the overhead to the overall application
performance and depends on the system
architecture and dynamic application behavior.
The next step uses these weights to compute the
affinity of each component grid to the different
processors. Initially grids have no affinity for
any processor. For each grid, the affinity of the
processor(s) housing its parents is now increased
by the inter-level communication weight.
Similarly the affinities of processors housing the
neighbors of the grid are increased by the intra-
level communication weight, and affinity of the
original location of the grid is increased by the
data-movement overhead weight. The grid is
now assigned to the available processors (i.e.
total assigned load is below threshold for load
balancing) to which the grid has maximum
affinity. If the grid has equal affinity to more
than one processor, the grid is either split among
the processor (if its size is greater than the size
threshold) or assigned to the processor with least
load. Weights assigned to the different
parameters can change dynamically depending
on the current application and system states. For
example if the application has many component
grids and uses a large stencil, then the
dominating weight is associated with intra-level
communication. Similarly if the application is
very dynamic and needs to regrid very often, the
data-movement weight dominates.

6. Experimental Evaluation
To evaluate the six distribution and load-

balancing schemes outlined in Section 5, we use
the trace of grid adaptations from a 3D AMR
application. The chosen application is the
simulation of the Buckley-Leverette equations
used in oil reservoir simulations. The trace was
generated from a single processor run with 5
levels of factor 2 refinement and consisted of
100 regrids steps. The trace was then fed to a
partitioning module that partitioned the boxes
across the required number of processor using
each of the six schemes. An AMR simulator
then evaluated various costs for the partition
generated. The plots presented in this section

represent cumulative costs for each scheme.
The vertical axis in each of these plots
represents the relevant metric. In case of
communication and data-movement overheads,
this corresponds to the amount of information
communicated. In case of distribution quality
metrics this corresponds to the number of grids
per processor and the percentage load imbalance
(a perfect load balance corresponds to 0%).

Figure 8 - Communication Overheads

Figure 9 - Data-Movement Overheads

0
200
400
600
800
1000

16 32 64

no of processors

Intralevel Communication (K Units)

sfc

cgd

igd

ild

itb

w eighted

0

500

1000

1500

16 32 64

no of processors

Interlevel Communication (K units)

sfc

cgd

igd

ild

itb

w eighted

0

500

1000

1500

2000

16 32 64

no of processors

Data-Movement (k Units)

sfc
cgd
igd
ild
itb
weighted

PDPTA�99, Las Vegas, Nevada, USA. June 28 - July 1, 1999.

Figure 10 - Distribution Quality

7. Conclusions and Future Work
In this paper we presented a performance

characterization of six dynamic partitioning and
load-balancing techniques for distributed
adaptive grid hierarchies that underlie parallel
adaptive mesh-refinement (AMR) techniques for
the solution of partial-differential equations.
This is part of an ongoing project for developing
policy driven �smart� tools for automated
distribution/load balancing of there problems in
heterogeneous distributed environments. The
characterization consisted of 3 metrics:
Interaction overheads (inter- and intra- level
communications and copies), Distribution
Quality (load-balance, number of grids) and
Data Movement. The presented results show that
space-filling curve, iterative tree balancing, and
weighted distribution clearly superior for all
metrics. The reason is that these techniques use
application information to determine the
partitioning rather than pure heuristic. The
weighted scheme in particular is tuned to this
class of applications and tends to do better than
the other schemes. Current work look at
completing this characterization and encoding
the results into a policy rule base that can drive
an automated partitioning and load-balancing
tool.

Figure 11 - Memory Copy Overheads

8. Refernces
[1] BATSRUS:

hpcc.engin.umich.edu/HPCC/codes\\/2/BAT
SRUSv2.html.

[2] Distributed Adaptive Grid Hierarchies,
www.caip.rutgers.edu/~parashar/DAGH/.

[3] Hanan Samet, The Design and Analysis of
Spatial Data Structures, Addison - Wesley
Publishing Company, 1989.

[4] M. Parashar and J.C. Browne, ``On
Partitioning Dynamic Adaptive Grid
Hierarchies'', Proceedings of the 29th
Annual Hawaii International Conference on
System Sciences, Jan. 1996.

[5] M. Parashar and J.C. Browne, `Distributed
Dynamic Data Structures for Parallel
Adaptive Mesh Refinement', Proceedings of
the International Conference for High
Performance Computing, Dec. 1995.

[6] SCOREC Parallel Scientific Computation:
www.scorec.rpi.edu/programs/parallel/Parall
elScientific.html

[7] PARAMESH:
sdcd.gsfc.nasa.gov/ESS/eazydir/\\inhouse/m
acneice/paramesh/paramesh.html.

[8] SAMRAI: Structured Adaptive Mesh
Refinement Applications Infrastructure,
www.llnl.gov/CASC/SAMRAI/.

0
1000
2000
3000
4000

16 32 64

no of processors

Intralevel Memory Copy (K units)

sfc

cgd

igd

ild

itb

w eighted

0
200
400
600
800
1000

16 32 64

no of processors

Interlevel Memory Copy (K units)

sfc

cgd

igd

ild

itb

w eighted

0
2
4
6
8

16 32 64

no of processors

% Load Imbalance
sfc
cgd
igd
ild
itb
weighted

0
5
10
15
20
25

16 32 64

no 0f processors

Number of Grids * 1000

sfc

cgd

igd

ild

itb

weighted

http://hpcc.engin.umich.edu/HPCC/codes///2/BATSRUSv2.html
http://hpcc.engin.umich.edu/HPCC/codes///2/BATSRUSv2.html
http://www.scorec.rpi.edu/programs/parallel/ParallelScientific.html
http://www.scorec.rpi.edu/programs/parallel/ParallelScientific.html

