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Abstract  

Dynamically adaptive methods for the solution of 
partial differential equations that employ locally 
optimal approximations can yield highly 
advantageous ratios for cost/accuracy. Distributed 
implementations of these methods offer the potential 
for accurate solution of physically realistic models of 
important physical systems. These implementations 
however, lead to interesting challenges in dynamic 
data-distribution and load balancing. This paper 
presents ongoing work on characterizing the 
performance of dynamic partitioning and load-
balancing techniques for distributed adaptive grid 
hierarchies that underlie adaptive mesh-refinement 
algorithms (AMR). The overall goal of this 
characterization is to enable the selection of the most 
appropriate mechanism based on application and 
system parameters. 
Keywords: Dynamic load balancing; Performance 
characterization; Adaptive mesh refinement. 

1. Introduction 
This paper presents ongoing work on the 

performance characterization of dynamic 
partitioning and load-balancing techniques for 
distributed adaptive grid hierarchies that 
underlie parallel adaptive mesh-refinement 
(AMR) techniques for the solution of partial-
differential equations. The overall goal of this 
characterization is to enable the selection of the 
most appropriate mechanism and based on 
application and system parameters. 

Dynamically adaptive methods for the 
solution of partial differential equations that 
employ locally optimal approximations can yield 
highly advantageous ratios for cost/accuracy 
when compared to methods based upon static 
uniform approximations. These techniques seek 
to improve the accuracy of the solution by 
dynamically refining the computational grid in 
regions of high local solution error. Distributed 
implementations of these methods offer the 
potential for accurate solution of physically 

realistic models of important physical systems. 
We believe that the next generation simulations 
of complex physical phenomenon will be built 
on top such dynamically adaptive techniques 
executing on dynamic and heterogeneous 
computational grids, and will provide dramatic 
insights into complex systems such as 
interacting black holes and neutron stars, 
formations of galaxies, oil reservoirs and 
aquifers, and seismic models of the whole earth.  

Distributed implementations of adaptive 
applications lead to interesting challenges in 
dynamic resource allocation, data-distribution 
and load balancing, communications and 
coordination, and resource management. The 
overall efficiency of the algorithms is limited by 
the ability to partition the underlying data-
structures at run-time so as to expose all inherent 
parallelism, minimize communication and 
synchronization overheads, and balance load. A 
critical requirement while partitioning adaptive 
grid hierarchies is the maintenance of logical 
locality, both across different levels of the 
hierarchy under expansion and contraction of the 
adaptive grid structure, and within partitions of 
grids at all levels when they are decomposed and 
mapped across processors. The former enables 
efficient computational access to the grids while 
the latter minimizes the total communication and 
synchronization overheads. Furthermore 
application adaptivity results in application grids 
being created, moved and deleted on the fly, 
making it is necessary to efficiently re-partition 
the hierarchy on the fly so that it continues to 
meet these goals.  

This paper first defines an application-centric 
performance characterization of distribution 
mechanism for AMR grid hierarchies. It then 
uses it to characterize the performance of a suite 
partitioning and load-balancing mechanisms 
used by distributed AMR infrastructures.  

2. Problem Description 
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Figure 1 - Adaptive Grid Hierarchy - 2D (Berger-
Oliger AMR Scheme) 

Dynamically adaptive numerical techniques 
for solving differential equations provide a 
means for concentrating computational effort to 
appropriate regions in the computational 
domain. In the case of hierarchical adaptive 
mesh refinement (AMR) methods, this is 
achieved by tracking regions in the domain that 
require additional resolution and dynamically 
overlaying finer grids over these regions. AMR-
based techniques start with a base coarse grid 
with minimum acceptable resolution that covers 
the entire computational domain. As the solution 
progresses, regions in the domain requiring 
additional resolution are tagged and finer grids 
are over laid on the tagged regions of the coarse 
grid. Refinement proceeds recursively so that 
regions on the finer grid requiring more 
resolution are similarly tagged and even finer 
grids are overlaid on these regions. The resulting 
grid structure is a dynamic adaptive grid 
hierarchy. The adaptive grid hierarchy 
corresponding to the AMR formulation by 
Marsha Berger and Joseph Oliger is shown in 
Figure 1. 

Distribution of adaptive methods based on 
hierarchical AMR consists of appropriately 
partitioning the adaptive grid hierarchy across 
available computing nodes, and concurrently 
operating on the local portions of this domain. 
Parallel AMR applications require two primary 
types of communication: (a) Inter-grid 
Communications: Inter-grid Communications 
are defined between component grids at 
different levels of the grid-hierarchy and consist 
of prolongations (coarse to fine transfers) and 
restrictions (fine to coarse transfers). These 
communications typically require a 
gather/scatter type operations based on an 
interpolation or averaging stencil. Inter-grid 

communications can lead to serialization 
bottlenecks for naïve decompositions of the grid 
hierarchy. (b) Intra-grid Communications: Intra-
grid Communications are required to update the 
grid-elements along the boundaries of local 
portions of a distributed grid. These 
communications consist of near-neighbor 
exchanges on the stencil defined by the 
difference operator. Intra-grid communications 
are regular and can be scheduled so as to overlap 
with computations on the interior region of the 
local portions of a distributed grid. Note that on 
the same processor, these communications 
translate to memory copies. Key requirements 
for a decomposition scheme used to partition the 
adaptive grid hierarchy across processors can be 
summarized as: (1) expose available data-
parallelism (2) minimize communication 
overheads (3) balance overall load distribution 
and (4) enable dynamic load redistribution with 
minimum overheads. A balanced load 
distribution and efficient re-distribution is 
particularly critical for parallel AMR based 
applications as different levels of the hierarchy 
have different computational loads. The AMR 
scheme for time dependent applications have 
large number of grid elements, which are 
frequently updated, which makes efficient 
dynamic re-distribution difficult. 

3. Parallel/Distributed AMR 
Infrastructures 

There already exists wide spectrum of 
software systems that support parallel and 
distributed implementations of AMR 
applications. Five such infrastructures are 
introduced below. Each system represents a 
unique combination of design decisions in terms 
of algorithms, data-structures, decomposition, 
mapping and distribution mechanism, and 
communication mechanism. In this paper we 
characterize the partitioning and load-balancing 
schemes that underlie these infrastructures.  

BATSRUS [1] is implemented in 
FORTRAN90, using a block-based domain-
decomposition approach. Blocks of cell (stored 
as 3D F90 arrays) are locally stored on each 
processor so as to achieve a reasonable balanced 
load. The application starts out with a pool of 
processors, some of which are possibly unused. 
Every utilized processor has a block of equal 
memory size, but possibly at a different 
resolution and/or a different sized partition of 
physical space. As the application adapts and 
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new (adapted) grids are created, these are 
allocated, in units of the same fixed block size to 
the unused processors. No more refinement can 
occur once all the virtual processors are used up.  

PARAMESH [7] is another FORTRAN 90 
package designed to provide an application 
developer with an easy route to extend an 
existing serial code which uses a logically 
cartesian structured mesh into a parallel code 
with adaptive mesh refinement (AMR). The 
PARAMESH distribution strategy is based on 
partitioning a hierarchical tree representation of 
the adaptive grid structure.   

SCOREC Parallel Mesh Databases (PMDB) 
[6] provides a generic mesh database for the 
topological, geometric and classification 
information that describes a finite element mesh. 
The database supports meshes of non-manifold 
models and multiple meshes on a single model 
or multiple models. Operators are provided to 
retrieve, store and modify the information stored 
in the database. PMDB provides three static 
partitioning procedures for initial mesh 
distribution, three dynamic load-balancing 
schemes and mesh migration operators.   

SAMRAI [7] is an object-oriented 
framework that provides computational 
scientists with general and extensible software 
support for the prototyping and development of 
parallel structured adaptive mesh refinement 
applications. SAMRAI makes extensive use of 
object-oriented techniques and various design 
patterns, such as Abstract Factory, Strategy, and 
Chain of Responsibility.  

   DAGH [2] is an object-oriented toolkit for 
the development of parallel and distributed 
applications based on a family of adaptive mesh-
refinement and multigrid techniques. DAGH is 
built on a  �semantically specialized� distributed 
shared memory substrate that implements a 
hierarchical distributed dynamic array (HDDA) 
[5][4]. HDDA provides uniform array access to 
heterogeneous dynamic objects spanning 
distributed address spaces and multiple storage 
types. Communication, synchronization and 
consistency of HDDA objects are transparently 
managed for the user. Distribution of the HDDA 
is achieved by partitioning its array index space 
across the processors. The index-space is 
directly derived from the application domain, 
using locality preserving space-filling mapping. 

4. A Characterization of AMR 
Distribution Mechanisms 

 We use four criteria to characterize 
distribution mechanism for AMR adaptive grid 
hierarchies, viz. load balance, distribution 
quality, grid interaction overheads (inter-
processor communication and memory copy), 
and data-movement overheads. These criteria 
are described below.  
4.1. Load Balance 

The load balance metric measures a 
combination of the distribution of load across 
the processors, the time taken to achieve the 
distribution. AMR applications require re-
distribution and load balancing at regular 
intervals; consequently the time spent in this 
effort is critical. The goal of this metric is to 
define operational points that represent the best 
balance between the effort spent in balancing the 
load and the balance achieved. In this paper we 
only address the quality of the load-balance and 
not the effort required. 
4.2. Distribution Quality 

Distribution quality is quantified by the 
number of grid components created on each 
processors and the quality (size, aspect ratio) of 
these components. The former captures the 
overheads due to the allocation, operation, and 
management and de-allocation of grid 
components. Large number of small grid 
increases the number of memory copies required 
for inter-level and intra-level communications. 
The size and shape of the grids also effects the 
communication/memory copy behavior. Bad 
aspect ratios result in larger interfaces between 
sibling grids and increased intra-level 
communications. Finally grid size also effects 
the overall cache behavior.  Our goal is to use 
this metric to determine an acceptable range for 
the shape and size of grid components for 
different architectures, and use this to drive the 
distribution. In this paper we evaluate the 
number of boxes for each scheme studied.  
4.3. Grid Interaction Overheads 

The grid interaction overhead metric aims at 
characterizing the ability of the distribution 
scheme to capture and maintain application 
locality. Here we measure the overheads of four 
kinds of communications: inter-grid 
communications between grids at different 
levels, intra-Grid communication along ghost 
boundaries, and inter- and intra grid memory 
copies for co-located grid components. 
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Maintaining locality to minimize these 
overheads can lead to conflicting optimizations. 
The objective of this metric is to identify a 
balance between the two overheads based on 
system memory architecture and communication 
characteristics, that can achieve best overall 
performance. 
4.4. Data Movement 

Every refinement step in the AMR 
algorithms typically causes the adaptive grid 
hierarchy to change requiring redistribution. The 
redistribution should be incremental so as to 
minimize the data that has to be relocated. The 
objective of the data movement metric is to 
characterize the ability of the distribution 
scheme to minimize redistribution costs by 
reassigning grids to their original location. 
Optimizing this metric can lead to conflicts with 
requirements for optimizing load balancing and 
interaction overheads. 

5. Run-Time Partitioning Dynamic 
AMR Grid Hierarchies 

The section describes the six dynamic 
partitioning and load balancing schemes that we 
have implemented and evaluated in this paper. 
These schemes encapsulate key ideas underlying 
the approaches used by the AMR infrastructures 
described in Section 3.  
5.1. Space-Filling Curves 

Figure 2 - Space-Filling Curve Representation of 
an Adaptive Grid Hierarchy 

Space-filling curves (SFC) [3] are a class of 
locality preserving mappings from d-
dimensional space to 1-dimensional space i.e., 
Nd ! N1, such that each point in Nd is mapped 
to a unique point or index in N1. The self-similar 
or recursive nature of these mappings can be 
exploited to represent a hierarchical structure 
and to maintain locality across different levels of 
hierarchy. The SFC representation of the 
adaptive grid hierarchy is a 1-D ordered list of 
composite grid blocks where each composite 
block represents a block of the entire grid 
hierarchy and may contain more than one grid 

level; i.e. inter-level locality is maintained 
within each composite block. Figure 2 illustrates 
the composite representation for a two 
dimensional grid hierarchy. Using the space-
filling curve representation, the adaptive grid 
hierarchy can be simply partitioned by 
partitioning the composite list to balance the 
total work assigned to each processor. This 
decomposition using the Peano-Hilbert space-
filling ordering for a 1-D grid hierarchy is 
shown in Figure 3. As inter-level locality is 
inherently maintained by the composite 
representation, the decomposition generated by 
partitioning this representation eliminates 
expensive gather/scatter communication and 
allows prolongation and restriction operations to 
be performed locally at each processor. 

Figure 3 - Space-Filling (Composite) Distribution 

5.2. Independent Grid Distribution  

Figure 4 - Independent Grid Distribution  

The independent grid distribution (IGD) 
scheme, shown in Figure 4, distributes the grids 
independently across the processors. This 
distribution leads to balanced loads and no 
redistribution is required when grids are created 
or deleted. However the decomposition scheme 
can be very inefficient with regard to inter-grid 
communication. In the adaptive grid hierarchy, a 
fine grid typically corresponds to a small region 
of the underlying coarse grid. If both, the fine 
and coarse grid are distributed over the entire set 
of processors, all the processors will 
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communicate with the small set of processors 
corresponding to the associated coarse grid 
region, thereby causing a serialization 
bottleneck. For example, a restriction from grid 
G22 to grid G11 requires all the processors to 
communicate with processor P3. 
5.3. Combined Grid Distribution 

Figure 5 - Combined Grid Distribution 

The combined grid distribution (CGD), 
shown in Figure 5, distributes the total work 
load in the grid hierarchy by first forming a 
simple linear structure by abutting grids at a 
level and then decomposing this structure into 
partitions of equal load. The combined 
decomposition scheme also suffers from the 
serialization bottleneck described above but to a 
lesser extent. For example, in Figure, G21 and 
G22 update G11 requiring P2 and P3 to 
communicate with P1 for every restriction. 
Regriding operations involving the creation or 
deletion of a grid are extremely expensive in this 
case, as they require an almost complete 
redistribution of the grid hierarchy. The 
combined grid decomposition does not exploit 
the parallelism available within a level of the 
hierarchy. For example, when G01 is being 
updated, processors P2 and P3 are idle and P1 
has only a small amount of work. Similarly 
when updating grids at level 1 (G11, G12 and 
G13) processors P0 and P3 are idle, and when 
updating grids at level 2 (G21, G22 and G23) 
processors P0 and P1 are idle.  
5.4. Independent Level Distribution 

In the independent level distribution (ILD) 
scheme (see Figure 6), each level of the adaptive 
grid hierarchy is individually distributed by 
partitioning the combined load of all component 
grids at the level is distributed among the 
processors. This scheme overcomes some of the 
drawbacks of the independent grid distribution. 
Parallelism within a level of the hierarchy is 
exploited. Although the inter-grid 

communication bottleneck is reduced in this 
case, the required gather/scatter communications 
can be expensive.  Creation or deletion of 
component grids at any level requires a re-
distribution of the entire level. 

Figure 6 - Independent Level Distribution 

5.5. Iterative Tree balancing 
 
   
 
 
 
 
 
 
 
 
 

 
 

Figure 7 - Iterative Tree Balancing 

The iterative tree balancing (ITB) scheme 
(see Figure 7) treats the dynamic partitioning 
and load-balancing problem as a graph-
partitioning problem. A table is created from the 
grids at each timestep, which keeps pointers to 
neighboring and parent grids. A breadth first 
search is made on this graph i.e. for every grid 
immediate neighbors and children are also 
considered along with load distribution. Thus 
load balancing, inter level communication and 
intra level communication are addressed 
together. This scheme is promising from the 
point of view that all the constraints are dealt 
with to some extent.  
5.6. Weighted Distribution 

The weighted distribution scheme is a 
heuristic based hybrid scheme that attempts to 
combine the features of the other schemes 
described in this section. As previously 
observed, there are three primary parameters that 

P1 P2
P

P4 
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need to be controlled to minimize the overheads 
of an adaptive grid hierarchy distribution, viz. 
intra-level communication, inter-level 
communication and data movement at each 
regrid. In the weighted distribution we first 
assign a weight to each of these overheads. This 
weight defines the significance and contribution 
of the overhead to the overall application 
performance and depends on the system 
architecture and dynamic application behavior. 
The next step uses these weights to compute the 
affinity of each component grid to the different 
processors. Initially grids have no affinity for 
any processor. For each grid, the affinity of the 
processor(s) housing its parents is now increased 
by the inter-level communication weight. 
Similarly the affinities of processors housing the 
neighbors of the grid are increased by the intra-
level communication weight, and affinity of the 
original location of the grid is increased by the 
data-movement overhead weight. The grid is 
now assigned to the available processors (i.e. 
total assigned load is below threshold for load 
balancing) to which the grid has maximum 
affinity. If the grid has equal affinity to more 
than one processor, the grid is either split among 
the processor (if its size is greater than the size 
threshold) or assigned to the processor with least 
load. Weights assigned to the different 
parameters can change dynamically depending 
on the current application and system states. For 
example if the application has many component 
grids and uses a large stencil, then the 
dominating weight is associated with intra-level 
communication. Similarly if the application is 
very dynamic and needs to regrid very often, the 
data-movement weight dominates.  

6. Experimental Evaluation 
To evaluate the six distribution and load-

balancing schemes outlined in Section 5, we use 
the trace of grid adaptations from a 3D AMR 
application. The chosen application is the 
simulation of the Buckley-Leverette equations 
used in oil reservoir simulations. The trace was 
generated from a single processor run with 5 
levels of factor 2 refinement and consisted of 
100 regrids steps. The trace was then fed to a 
partitioning module that partitioned the boxes 
across the required number of processor using 
each of the six schemes. An AMR simulator 
then evaluated various costs for the partition 
generated. The plots presented in this section 

represent cumulative costs for each scheme.  
The vertical axis in each of these plots 
represents the relevant metric. In case of 
communication and data-movement overheads, 
this corresponds to the amount of information 
communicated. In case of distribution quality 
metrics this corresponds to the number of grids 
per processor and the percentage load imbalance 
(a perfect load balance corresponds to 0%). 

Figure 8 - Communication Overheads 

 

Figure 9 - Data-Movement Overheads 
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Figure 10 - Distribution Quality 

7. Conclusions and Future Work 
In this paper we presented a performance 

characterization of six dynamic partitioning and 
load-balancing techniques for distributed 
adaptive grid hierarchies that underlie parallel 
adaptive mesh-refinement (AMR) techniques for 
the solution of partial-differential equations. 
This is part of an ongoing project for developing 
policy driven �smart� tools for automated 
distribution/load balancing of there problems in 
heterogeneous distributed environments. The 
characterization consisted of 3 metrics: 
Interaction overheads (inter- and intra- level 
communications and copies), Distribution 
Quality (load-balance, number of grids) and 
Data Movement. The presented results show that 
space-filling curve, iterative tree balancing, and 
weighted distribution clearly superior for all 
metrics. The reason is that these techniques use 
application information to determine the 
partitioning rather than pure heuristic. The 
weighted scheme in particular is tuned to this 
class of applications and tends to do better than 
the other schemes. Current work look at 
completing this characterization and encoding 
the results into a policy rule base that can drive 
an automated partitioning and load-balancing 
tool. 

 

Figure 11 - Memory Copy Overheads 
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