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Abstract

This paper presents the design and evaluation of a sys-
tem sensitive partitioning and load balancing framework
for distributed adaptive grid hierarchies that underlie par-
allel adaptive mesh-refinement (AMR) techniques for the
solution of partial-differential equations. The framework
uses system capabilities and current system state to select
and tune appropriate distribution parameters (e.g. parti-
tioning granularity, load per processor) to maximize overall
application performance.

1. Introduction

Dynamically adaptive methods for the solution of par-
tial differential equations that employ locally optimal ap-
proximations can yield highly advantageous ratios for
cost/accuracy when compared to methods based upon static
uniform approximations. These techniques seek to improve
the accuracy of the solution by dynamically refining the
computational grid in regions of high local solution error.
Distributed implementations of these adaptive methods of-
fer the potential for the accurate solution of realistic models
of important physical phenomena. These implementations
however, lead to interesting challenges in dynamic resource
allocation, data-distribution and load balancing, communi-
cations and coordination, and resource management.

Moving these applications to dynamic and heteroge-
neous networked computing environments introduces a new
level of complexity. These environments require the selec-
tion and configuration of application components based on
the availability and state of the resources. However, the
complexity and heterogeneity of the environment make se-
lection of a “best” match between system resources, map-
pings and load distributions, communication mechanisms,
etc., non-trivial. System dynamics coupled with application

adaptivity makes application and run-time management a
significant challenge.

In this paper we present the design and evaluation of a
system sensitive partitioning and load balancing framework
for distributed adaptive grid hierarchies that underlie par-
allel AMR (adaptive mesh-refinement) techniques for the
solution of partial-differential equations. The framework
uses system capabilities and current system state to select
and tune appropriate distribution parameters. Current sys-
tem state is obtained using a resource monitoring tool called
NWS (Network Weather Service) [2]. The current system
state of the computational nodes is then used to compute
the relative computational capacities of each of the nodes.
The relative capacities are then used by a heterogeneous
“system-sensitive” partitioner for dynamic distribution and
load-balancing. The Heterogeneous partitioner has been
integrated into the GrACE (Grid Adaptive Computational
Engine) infrastructure [1], and provides system sensitive
partitioning/load-balancing support for AMR applications.
It is known as the ACEHeterogeneous partitioning scheme.

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work, Section 3 describes the adap-
tive grid structure defined by hierarchical adaptive mesh-
refinement techniques, Section 4 talks about GrACE, Sec-
tion 5 describes the system architecture of the system sen-
sitive framework, Section 6 describes the simulation setup
and experimental results to evaluate how well the system-
sensitive partitioner works, and Section 7 presents some
concluding remarks.

2. Related Work

A lot of work has been done in the area of load balanc-
ing on a heterogeneous network. Some work has also been
done to map a static application to a heterogeneous envi-
ronment when the environment is dynamic. The authors in
[4] have defined an algorithm which determines the best al-



Reference Environment Application
State State

S. M. Figueira, et. al static static
J. Watts, et. al dynamic static
M. Maheswaran, et. al dynamic static
R. Wolski, et. al dynamic static
ACEHeterogeneous static dynamic

Table 1. Summary of the simulation set-ups used by
various systems.

location of tasks to resources in heterogeneous systems. It
however does not take into account the dynamism in the
environment and uses a static application. Reference [5]
has also presented techniques for dynamic load balancing
in heterogeneous computing environments. They have also
shown that performance improves when the computers ca-
pacities’ are calculated dynamically. [6] has proposed a new
dynamic algorithm, called the hybrid remapper, for improv-
ing the initial static matching and scheduling. The hybrid-
remapper uses the run-time values that become available for
subtask completion times and machine availabilities during
application execution time. They have also used a static ap-
plication. Reference [2] talks about finding a suitable match
in a heterogeneous network when the network conditions
are changing.

What is unique to our approach is the fact that we will
take into account the heterogeneous network as well as the
dynamism in the application.

3. Problem Description: Distributed AMR Ap-
plications

Dynamically adaptive numerical techniques for solving
differential equations provide a means for concentrating
computational effort to appropriate regions in the compu-
tational domain. In the case of hierarchical AMR methods,
this is achieved by tracking regions in the domain that re-
quire additional resolution and dynamically overlaying finer
grids over these regions. AMR-based techniques start with
a base coarse grid with minimum acceptable resolution that
covers the entire computational domain. As the solution
progresses, regions in the domain requiring additional reso-
lution are tagged and finer grids are overlaid on the tagged
regions of the coarse grid. Refinement proceeds recursively
so that regions on the finer grid requiring more resolution
are similarly tagged and even finer grids are overlaid on
these regions. The resulting grid structure is a dynamic
adaptive grid hierarchy.

The adaptive grid hierarchy corresponding to the AMR
formulation by Berger & Oliger [3] is shown in Figure [1].
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Figure 1. Adaptive Grid Hierarchy - 2D (Berger-
Oliger AMR Scheme)

Operation on the hierarchy defined by this algorithm are
outlined below:

Time Integration: Time integration is the update opera-
tion performed on each grid at each level of the adaptive
grid hierarchy. Integration uses an application specific dif-
ference operator.

Inter-Grid Operations: Inter-grid operations are used to
communicate solutions values along the adaptive grid hier-
archy. Two primary inter-grid operations are Prolongations
operations defined from a coarser grid to a finer grid and
Restriction operations defined from a finer grid to a coarser
grid.

Regriding: The regriding operation consists of three
steps: (1) flagging regions needing refinement based on an
application specific error criterion, (2) clustering flagged
points, and (3) generating the refined grid(s). The regrid-
ing operation can result in the creation of a new level of
refinement or additional grids at existing levels, and/or the
deletion of existing grids.

3.1. Decomposing the Adaptive Grid Hierarchy

Key requirements of a decomposition scheme used to
partition the adaptive grid hierarchy across processors are:
(1) expose available data-parallelism; (2) minimize com-
munication overheads by maintaining inter-level and intra-
level locality; (3) balance overall load distribution; and (4)
enable dynamic load re-distribution with minimum over-
heads.

A balanced load distribution and efficient re-distribution
is particularly critical for parallel AMR-based applications
as different levels of the grid hierarchy have different com-
putational loads. In case of the Berger-Oliger AMR scheme



for time-dependent applications, space-time refinement re-
sult in refined grids which not only have a larger number of
grid elements but are also updated more frequently (i.e. take
smaller time steps). The coarser grid are generally more ex-
tensive and hence its computational load cannot be ignored.

The AMR grid hierarchy is a dynamic structure and
changes as the solution progresses, thereby making efficient
dynamic re-distribution critical.

The “system-sensitive” partitioner load-balances the
computational load amongst the nodes based on the current
system state of the computational nodes.

4. GrACE

The ACEHeterogeneous partitioning scheme has been
integrated into GrACE. GrACE [1] is an approach to dis-
tributing AMR grid hierarchies. It is an object-oriented
toolkit for the development of parallel and distributed ap-
plications based on a family of adaptive mesh-refinement
and multigrid techniques. GrACE is built on a “ semanti-
cally specialized” distributed shared memory substrate that
implements a hierarchical distributed dynamic array.

4.1. Unified Distributed Dynamic Data Manage-
ment for Interactive AMR

Its primary objective is to provide a distributed and dy-
namic data-management substrate to support development,
implementation and interactive execution of large-scale par-
allel adaptive applications. The lowest layer of the infras-
tructure implements a Hierarchical Distributed Dynamic
Array (HDDA). The HDDA provides array semantics to hi-
erarchical and physically distributed data. HDDA objects
encapsulate dynamic load-balancing, interactions and com-
munications, and consistency management. The next layer
adds application semantics to HDDA objects to implement
application objects such as grids, meshes and trees. This
layer provides an object-oriented programming interface
for directly expressing multi-scale, multi-resolution AMR
computations. The upper layers of the infrastructure pro-
vide components and modules for visualization, interaction
and method-specific computations.

4.2. Hierarchical Distributed Dynamic Array

The primitive data structure provided by the unified data-
management infrastructure is an array which is hierarchical
in that each element of the array can recursively be an ar-
ray, and dynamic in that the array can grow and shrink at
run-time. The array of objects is partitioned and distributed
across multiple address spaces with communication, syn-
chronization and consistency transparently managed for the
user. The lowest level of the array hierarchy is an object

Figure 2. Hierarchical Space-filling Mappings

of arbitrary size and structure. The primary motivation for
defining such a generalized array data-structure is that most
application domain algorithms are formulated as operations
on grids and their implementation is defined as operations
on arrays. Such array based formulations have proven to
be simple, intuitive and efficient, and are extensively opti-
mized by current compilers. Providing an array interface to
the dynamic data-structures allows implementations of new
parallel and adaptive algorithms to reuse existing kernels at
each level of the HDDA hierarchy. Like conventional arrays
HDDA must translate index locality (corresponding spatial
application locality) to storage locality, and must maintain
this locality despite its dynamics and distribution. Applying
“separation of concerns” to the HDDA design , it is decom-
posed into two components; hierarchical index spaces, and
distributed dynamic storage and access. These components
are described below.

4.3. Hierarchical Index Spaces:

The hierarchical extendible index space component of
the HDDA is derived directly from the application domain
using space-filling mappings, which are computationally ef-
ficient, recursive mappings from N-dimensional space to 1-
dimensional space (see Figure [2]). The solution space is
first partitioned into segments. The space filling curve then
passes through the midpoints of these segments. The map-
ping functions are computationally efficient and consist of
logical bit-interleaving operation on the N-dimensional co-
ordinates. Space filling mappings encode application do-
main locality and maintain this locality through expansion
and contraction. The self-similar or recursive nature of
these mappings can be exploited to represent a hierarchi-
cal structure and to maintain locality across different levels
of the hierarchy. The hierarchical index-space is used by the
HDDA as the basis for application domain partitioning, as
a global address space for allocating storage to application
objects, as a global name-space for name resolution, and for
communication scheduling.



Figure 3. Distributed Storage of Dynamic Ob-
jects

4.4. Distributed, Dynamic Storage and Access:

Data storage is implemented using extendible hashing
techniques with contractions of the hierarchical index-space
indices serving as hash keys. Extendible hashing provides
efficient management mechanisms for dynamic data-bases.
Spans of the hash keys space are mapped to units of storage
called hash buckets and expansion and contraction of the
key space are handled efficiently by splitting and merging
these buckets. These operations are local involving at most
two buckets. As spans of the index space are mapped to
contiguous storage within a bucket by the hashing scheme,
index locality (which encodes applications domain locality)
is translated into storage locality. Data locality is preserved
without copying. Partitioning of the applications domain
and associated distribution of HDDA objects is achieved by
partitioning the index space among processing elements and
assigning ownership to HDDA buckets. Buckets are used
as the units of communications and caching. The overall
HDDA distributed dynamic storage scheme is shown in Fig-
ure [3].

5. System Architecture

We now describe the design of the system sensitive
framework. In the system sensitive framework, we first
monitor the state of resources associated with the different
computing nodes and use this information to compute their
relative computational capacities. The relative capacities
are then used by the heterogeneous system-sensitive parti-
tioner which has been integrated into GrACE for dynamic
distribution and load-balancing as shown in Figure [4[.
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Figure 4. Block Diagram of the System Model

5.1. Resource Monitoring Tool

System characteristics and state are determined at run-
time using a resource monitoring tool. The resource moni-
toring tool gathers information about the CPU availability,
memory usage and link-capacity of each processor. This
information is then passed to the Capacity Calculator as
shown in Figure [4] and discussed below.

5.2. Capacity Metric

Using system information obtained with the resource
monitoring tool, a relative capacity metric is computed for
each processor using a linear model. Let us assume that
there are K processors in the system among which the par-
titioner distributes the work load. For node k, let Pk be
the percentage of CPU available , Mk the available mem-
ory, and Bk the link bandwidth, as provided by NWS. The
available resource at k is first converted to a fraction of to-
tal available resources, i.e. Pk = Pk=

PK

i=1 Pi, Mk =

Mk=
PK

i=1Mi, and Bk = Bk=
PK

i=1 Bi. The relative ca-
pacityCk of a processor is then defined as the weighted sum
of these normalized quantities

Ck = wpPk + wmMk + wbBk (1)

where wp, wm, and wb are the weights associated with the
relative CPU, memory, and link bandwidth availabilities, re-
spectively, such thatwp+wm+wb = 1. The weights are ap-
plication dependent and reflect its computational, memory,
and communication requirements. Note that

PK

k=1 Ck = 1.
If the total work to be assigned to all the processors is de-
noted byL, then the workLk that can be assigned to the kth
processor can be calculated as Lk = CkL.

5.3. ACEHeterogeneous Partitioning Routine

As discussed earlier, the ACEHeterogeneous partition-
ing routine has been integrated into the GrACE infrastruc-



Figure 5. Diagram of a 2-D Bounding Box

ture and provides load-balancing support for AMR applica-
tions. In GrACE, the grids in the adaptive grid hierarchy
are maintained in the form of a bounding box list. A 2-D
bounding box is shown in Figure [5]. The bounding box
is an abstraction which addresses a region in the compu-
tational domain. At every timestep of the simulation, the
partitioning routine gets a list of bounding boxes as input
from GrACE. The partitioning routine then partitions this
bounding box list.

A high level description of the partitioning process com-
prises of the following steps below:

� The relative capacitiesCk; k = 1; : : : ;K of theK pro-
cessors on which the application will run are obtained
from the Capacity Calculator as shown in Figure [4].

� The total work L associated with the bounding box list
is calculated.

� Using the capacity metric, the ideal work load Lk that
can be assigned to the kth processor is calculated.

� The bounding boxes are then assigned to the proces-
sors, with the kth processor receiving a total work load
of Wk which is approximately equal to Lk.

� At any point, if the work associated with a bounding
box exceeds the work the processor can perform, then
it is broken into two in a way that the work associated
with at least one of the two broken boxes is less than
or equal to the work the processor can perform.

� Since GrACE has a limit on the minimum size of a
box, the bounding boxes have to be broken under this
constraint. As a consequence, at times, the total work
loadWk that is assigned to processor k may differ from
Lk thus leading to a slight load imbalance.

X

Y

(12,0,0)

(0,0,8)

Z

 

lb: (0,0,0)

ub: (12,24,8)

(0,24,0)

Figure 6. Diagram of a 3-D Bounding Box. The
lower and upper bounds are denoted by lb and ub,
respectively.

� The aspect ratio of a bounding box, defined as the ratio
of the longest side to the shortest side, is also taken
into account while breaking the box. We consider only
the longest axis of the bounding box and break along
that direction. For example, consider a box with the
coordinates of the lower and upper bounds as (0,0,0)
and (12,24,8) respectively, as shown in Figure [6]. In
this Figure, since the length of the bounding box is
longest in the y direction, we break the box along the
xz plane. Breaking the box along any other axis would
result in bounding boxes of very uneven sizes [7].

� Both the list of bounding boxes as well as the rela-
tive capacities of the processors are sorted in an in-
creasing order, with the smallest box being assigned to
the processor with the smallest relative capacity. This
eliminates unnecessary breaking of boxes and hence
reduces the associated overhead.

� The local output list of bounding boxes is returned to
GrACE which then allocates the work to the particular
processor.

6. Simulation Setup and Experimental Results

A 3D WAVEAMR application was used for our simu-
lations. To evaluate the performance of this system sensi-
tive approach, we used the overall execution time as a met-
ric. We compared the execution time of the ACEHeteroge-
neous partitioning scheme with ACEComposite partition-
ing scheme [1]. This is one of the schemes that is used
by GrACE for partitioning. This scheme performs an equal
distribution of the workload on the processors and does not



take into account the heterogeneity that is associated with
the processors on which the application is running.

6.1. Artificial Load Generation

In order to compare the two partitioning schemes, it is
important to have the same simulation environment for both
of them. Hence, the simulation has to be performed in a
controlled environment so that the system state is the same
in both the simulations. To achieve this, we created an artifi-
cial load generator which can load a processor with artificial
work. The load generator was used to decrease the memory
and CPU availabilities of a processor, thus lowering its ca-
pacity to do any additional work. This is how the capacities
of the processors were artificially varied in our simulations.

6.2. Resource Monitoring

As described in the system architecture, the system state
of the processors is obtained using a resource monitoring
tool. In our experimental setup, system characteristics and
state are determined at run-time using the NWS resource
monitoring tool [2].

The NWS is a distributed system that periodically mon-
itors and dynamically forecasts the performance delivered
by the various network and computational resources over a
given time interval. NWS currently monitors the fraction of
CPU time available for new processes, the fraction of CPU
available to a process that is already running, end-to-end
TCP network latency, end-to-end TCP network bandwidth,
free memory, and the amount of space unused on a disk.

6.3. Load Distribution

As an example, we now describe the load distribution
among two processors named Aguada and Bambolim. For
both the partitioning schemes, the artificial load generator
was run only on Aguada. The Capacity Calculator extracted
the system state from NWS and used it to calculate the
relative capacities C1 and C2 for both the processors us-
ing (1) above. We assumed that all three system charac-
teristics, namely CPU, memory, and link bandwidth, were
equally important to the application and hence we chose
wp = wm = wb = 1=3. The relative capacities were
then used as input to the Heterogeneous partitioner. The
processor Aguada was artificially loaded so that its relative
capacity was C1 = 0:3 (or 30%) and that of Bambolim
was C2 = 0:7 (or 70%). Since the Heterogeneous parti-
tioner divides the work load L proportionately among the
two processors based on the above capacities, Aguada and
Bambolim can be assigned work loads of L1 = 0:3L and
L2 = 0:7L, respectively.
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Figure 7. Comparison of execution time of the two
partitioning schemes

6.4. Results

The total execution time under the ACEHeterogeneous
partitioning scheme was obtained and plotted as the first
row in the Figure [7]. The same application was then run
under the same conditions using the ACEComposite par-
titioning scheme, and the total execution time under this
scheme was plotted as the second row in Figure [7]. We
can see that for the 2 processor run, the total execution
time under the ACEHeterogeneous partitioning scheme was
around 128 secs, whereas that under the ACEComposite
partitioning scheme was around 171 secs. Therefore, a
speedup was obtained by taking the heterogeneity of the
processors into account before distributing the work load
among them. Similar tests were also done on 4 and 6 pro-
cessors shown in Figure [7]. The relative capacities for the
4 processor run were approximately 16%; 19%; 30%, and
34%, and that for the 6 processor run were approximately
11%; 13%; 14%; 20%; 20%, and 21%. The results from
these runs (as shown in Figure [7]) also demonstrate the
improvement the ACEHeterogeneous partitioning scheme
yields over the ACEComposite partitioning scheme.

The work load assignment for the 4 processor run, under
the ACEComposite partitioning scheme has been plotted in
Figure [8]. The plot shows the work load assignment after
every 5 iterations. The work assignments for the proces-
sors are similar to each other because the ACEComposite
partitioning scheme ignores the relative capacities and dis-
tributes the work equally among the processors.

The work load assignment under the ACEHeterogeneous
partitioning scheme has been plotted in Figure [9]. The rel-
ative capacities of the four processors were approximately
16%, 19%, 30% and 34%. In this case, we can see from
the plot that the work load was assigned in proportion to the
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Figure 8. Work-load assignments for the ACECom-
posite partitioning scheme. The relative capacities of
the processors are 16%; 19%; 30%; 34%

relative capacities of the processors.
Figures [8] and [9] do not reflect the percentage load im-

balance. For the kth processor, the load imbalance Ik is
defined as

Ik =
jWk � Lkj

Lk
�100 % (2)

The percentage of load imbalance for ACEComposite and
ACEHeterogeneous has been plotted in Figures [10] and
[11] respectively. As expected, since the ACEComposite
partitioning scheme distributes work equally regardless of
the different relative capacities, the load imbalance in Fig-
ure [10] is higher than that in Figure [11]. Since a bounding
box is cut only along a particular axis and also due to the
minimum box size constraint, we do see some imbalance for
the ACEHeterogeneous scheme as well, as shown in Fig-
ure [11]. In spite of this, the load imbalance associated with
the ACEHeterogeneous partitioning scheme is significantly
lower than that of the ACEComposite partitioning scheme.

7. Conclusions and Future Work

This paper presented a framework that uses the current
system state of the computing nodes to distribute an appli-
cation among the nodes. The framework monitors the avail-
ability of resources at the computing nodes, calculates the
relative capacities of these nodes, and then assigns work in
proportion to their capacities. It was shown through simu-
lation that this scheme reduces the total execution time of
the application and the load imbalance as compared to a
scheme that does not take the relative capacities of the com-
puting nodes into account. We are currently extending this
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Figure 9. Work-load assignments for the ACE-
Heterogeneous partitioning scheme. The relative ca-
pacities of the processors are 16%; 19%; 30%; 34%

work to accommodate a more careful choice of weights w p,
wm, andwb which will adequately reflect the computational
needs of the application.
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