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dutonomic computing is inspired by the human
Quiionomic nervous system that has developed strategies
and algorithms to handle complexity and uncertainties,
and aims at realizing computing systems and applications

capable of managing themselves with minimum human

intervention.

1. Introduction

The advances in computing and communication technologies
and software tools have resulted in an explosive growth in
networked applications and information services that cover
all aspects of our life. These services and applications are in-
herently complex, dynamic and heterogeneous. In a similar
way, the underlying information infrastructure, e.g. the In-
ternet, is large, complex, heterogeneous and dynamic, glob-
ally aggregating large numbers of independent computing and
communication resources, data stores and sensor networks.
The combination of the two results in application develop-
ment, configuration and management complexities that break
current computing paradigms, which are based on static be-
haviors, interactions and compositions of components and/or
services. As aresult, applications, programming environments
and information infrastructures are rapidly becoming brittle,
unmanageable and insecure. This has led researchers to con-
sider alternative programming paradigms and management
techniques that are based on strategies used by biological sys-
tems to deal with complexity, dynamism, heterogeneity and
uncertainty.

Autonomic computing is inspired by the human autonomic
nervous system that handles complexity and uncertainties, and
aims at realizing computing systems and applications capable
of managing themselves with minimum human intervention.
In this paper we first give an overview of the architecture
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of the autonomic nervous system and use it to motivate our
approach to develop the autonomic computing paradigm. We
then illustrate how this paradigm can be used to control and
manage complex applications.

2. Motivations: The human autonomic nervous system

The human nervous system is, to the best of our knowledge,
the most sophisticated example of autonomic behavior ex-
isting in nature today [1]. It is the body’s master controller
that monitors changes inside and outside the body integrates
sensory input, and effects appropriate response. In conjunc-
tion with the endocrine system, which is the body’s second
important regulating system, the nervous system is able to
constantly regulate and maintain homeostasis. Homeostasis
is one of the most remarkable properties of highly complex
systems. A homeostatic system (a large organization, an indus-
trial firm, a cell) is an open system that maintains its structure
and functions by means of a multiplicity of dynamic equilib-
riums that are rigorously controlled by interdependent regu-
lation mechanisms. Such a system reacts to every change in
the environment, or to every random disturbance, through a
series of modifications that are equal in size and opposite in
direction to those that created the disturbance. The goal of
these modifications is to maintain internal balances.

The manifestation of the phenomenon of homeostasis is
widespread in the human system. As an example consider
the mechanisms that maintain the concentration of glucose
in the blood within limits—if the concentration should fall



below about 0.06 percent, the tissues will be starved of their
chief source of energy; if the concentration should rise above
about 0.18 percent, other undesirable effects will occur. If
the blood-glucose concentration falls below about 0.07 per-
cent, the adrenal glands secrete adrenaline, which causes the
liver to turn its stores of glycogen into glucose. This passes
into the blood and the blood-glucose concentration drop is
opposed. Further, a falling blood-glucose also stimulates the
appetite causing food intake, which after digestion provides
glucose. On the other hand, if the blood-glucose concentra-
tion rises excessively, the secretion of insulin by the pancreas
is increased, causing the liver to remove the excess glucose
from the blood. Muscles and skin also remove excess glucose
and if the blood-glucose concentration exceeds 0.18 percent,
the kidneys excrete excess glucose into the urine. Thus, there
are five activities that counter harmful fluctuations in blood-
glucose concentration [2].

The above example focuses on the maintenance of the
blood-glucose concentration within safe or operational limits
that have been ‘predetermined’ for the species. Similar control
systems exist for other parameters such as systolic blood pres-
sure, structural integrity of medulla oblongata, severe pressure
of heat on the skin and so on. All these parameters have a bear-
ing on the survivability of the organism, which in this case is
the human body. However, all parameters are not uniform in
their urgency or their relations to lethality. Parameters that are
closely linked to survival and closely linked to each other so
that marked changes in one leads sooner or later to marked
changes in the others, have been termed as essential variables
by Ashby in his study of the design for a brain [2], which is
discussed below.

2.1. Ashby’s ultrastable system

Every real machine embodies no less than an infinite number
of variables, and for our discussion we can safely think of the
human system as represented by a similar sets of variables,
of which we will consider a few. In order for an organism to
survive, its essential variables must be kept within viable limits
(refer figure 1). Otherwise the organism faces the possibility
of disintegration and/or loss of identity (dissolution or death)
[3].

The body’s internal mechanisms continuously work to-
gether to maintain essential variables within their limits.
Ashby’s definition of adaptive behavior as demonstrated by
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Figure 1. Essential variables.
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the human body follows from this observation. He states that
a form of behavior is adaptive if it maintains the essential vari-
ables within physiological limits [2] that define the viability
zone. Two important observations can be made:

1. The goal of the adaptive behavior is directly linked with
the survivability of the system.

2. If the external or internal environment pushes the system
outside its physiological equilibrium state the system will
always work towards coming back to the original equilib-
rium state.

Ashby observed that many organisms undergo two forms
of disturbance: (1) frequent small impulses to main variables
and (2) occasional step changes to its parameters. Based on
these observations he devised the architecture of the ultra-
stable system that consists of two closed loops: one that can
control small disturbances while the second control loop is
responsible for larger disturbances. This is shown in figure 2.

As shown in figure 2, the ultra-stable system consists of
two sub-systems, the environment and the reacting part (R).

R represents a subsystem of the organism that is responsible
for overt behavior or perception. It uses the sensor channels as
part of its perception capability and motor channels to respond
to the changes impacted by the environment. These set of
sensor and motor channels constitute the primary feedback
between R and the environment. We can think of R as a set
of behaviors of the organism that get triggered based on the
changes affected by the environment. S represents the set of
parameters that trigger changes in relevant features of this
behavior set.

Note that in figure 2, S trigger changes only when the en-
vironment affects the essential variables in a way that causes
them to be outside their physiological limits. As mentioned
above, these variables need to be maintained within physiolog-
ical limits for any adaptive system/organism to survive. Thus
we can view this secondary feedback between the environment
and R as responsible for triggering the adaptive behavior of
the organism. When the changes impacted by the environ-
ment on the organism are large enough to throw the essential
variables out of their physiological limits, the secondary feed-
back becomes active and changes the existing behavior sets of
the organism to adapt to these new changes. Notice that any
changes in the environment tend to push an otherwise stable
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Figure 2. The ultra-stable system architecture [1].
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system to an unstable state. The objective of the whole sys-
tem is to maintain the subsystems (the environment and R) in
a state of stable equilibrium. The primary feedback handles
finer changes in the environment with the existing behavior
sets to bring the whole system to stable equilibrium. The sec-
ondary feedback handles coarser and long-term changes in
the environment by changing its existing behavior sets and
eventually brings back the whole system to stable equilibrium
state. Hence, in a nutshell, the environment and the organism
always exist in a state of stable equilibrium and any activity
of the organism is triggered to maintain this equilibrium.

2.2. The nervous system: A subsystem within Ashby’s
ultra-stable system

The human nervous system is adaptive in nature. In this Sec-
tion we apply the concepts of Ashby’s ultra-stable system
to the human nervous system. The goal is to enhance the
understanding of an adaptive system and help extract essen-
tial concepts that can be applied to the autonomic computing
paradigm presented in the following sections.

As shown in figure 3, the nervous system is divided into
the Peripheral Nervous System (PNS) and the Central Ner-
vous System (CNS). The PNS consists of sensory neurons
running from stimulus receptors that inform the CNS of the
stimuli and motor neurons running from the CNS to the mus-
cles and glands, called effectors, which take action. CNS is
further divided into two parts: sensory-somatic nervous sys-
tem and the autonomic nervous system. Figure 4 shows the

Figure 3. Organization of the nervous system.
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Figure 4. Nervous system as part of an ultrastable system.

architecture of the autonomic nervous system modeled after
Ashby’s ultra-stable system.

As shown in figure 4, the Sensory and Motor neurons con-
stitute the Sensor and Motor channels of the ultra-stable sys-
tem. The triggering of essential variables, selection of the input
parameter S and translation of these parameters to the react-
ing part R constitute the workings of the Nervous System.
Revisiting the management of blood-glucose concentration
within physiological limits discussed earlier, the five mech-
anisms that get triggered when the essential variable (con-
centration of glucose in blood) goes out of the physiological
limits change the normal behavior of the system such that
the reacting part R works to bring the essential variable back
within limits. It uses its motor channels to effect changes so
that the internal environment and the system (organism) come
into the state of stable equilibrium. It should be noted that
the environment here is divided into the internal environment
and external environment. The internal environment repre-
sents changes impacted internally within the human system
and the external environment represents changes impacted by
the external world. However, the goal of the organism is to
maintain the equilibrium of the entire system where all the
sub-systems (the organism or system itself, the internal and
external environments) are in stable equilibrium.

2.3. The autonomic computing paradigm

An autonomic computing paradigm, modeled after the au-
tonomic nervous system, must have a mechanism whereby
changes in its essential variables (e.g., performance, fault, se-
curity, etc.) can trigger changes to the behavior of the com-
puting system such that the system is brought back into equi-
librium with respect to the environment. This state of stable
equilibrium is a necessary condition for the survivability of
the organism. In the case of an autonomic computing sys-
tem, we can think of survivability as the systems ability to
protect itself, recover from faults, reconfigure as required by
changes in the environment and always maintain its opera-
tions at a near optimal performance. Both the internal (e.g.
excessive CPU utilization) and the external environment (e.g.
protection from an external attack) impact its equilibrium.
The autonomic computing system requires sensor channels to
sense the changes in the internal and external environment and
motor channels to react to the changes in the environment by
changing itself so as to counter the effects of changes in the
environment and maintain equilibrium. The changes sensed
by the sensor channels have to be analyzed to determine if
any of the essential variables has gone out of their viability
limits. If so, it has to trigger some kind of planning to deter-
mine what changes to inject into the current behavior of the
system such that it returns to equilibrium state within the new
environment. This planning would require wisdom to select
just the right behavior from a large set of possible behaviors to
counter the change. Finally, the motor neurons execute the se-
lected change. ‘Sensing’, ‘Analyzing’, ‘Planning’, ‘Wisdom’
and ‘Execute’ are in fact the keywords used to identify an



autonomic system [4]. In what follows, we use these concepts
to identify the properties of an autonomic computing system.
We then present the architecture of an autonomic comput-
ing system being developed at The University of Arizona and
Rutgers University, that provides key autonomic middleware
services to support the composition and self-managed execu-
tion of autonomic applications. We will discuss how simple
“un-intelligent” applications are converted into autonomic ap-
plications in a process of dynamic and opportunistic composi-
tion of autonomic components. We then discuss the execution
and management of these applications within our proposed
autonomic computing framework.

3. Properties of an autonomic computing system

An autonomic computing system can be a collection of auto-
nomic components, which can manage their internal behaviors
and relationships with others in accordance to high-level poli-
cies. The principles that govern all such systems have been
summarized as eight defining characteristics [5,6]:

1. Self-Awareness: an autonomic system knows itself and is
aware of its state and its behaviors.

2. Self-Protecting: an autonomic system is equally prone to
attacks and hence it should be capable of detecting and pro-
tecting its resources from both internal and external attack
and maintaining overall system security and integrity.

3. Self-Optimizing: an autonomic system should be able to
detect performance degradation in system behaviors and
intelligently perform self-optimization functions.

4. Self-Healing: an autonomic system must be aware of po-
tential problems and should have the ability to reconfigure
itself to continue to function smoothly.

5. Self-Configuring: an autonomic system must have the abil-
ity to dynamically adjust its resources based on its state
and the state of its execution environment.

6. Contextually Aware: an autonomic system must be aware
of its execution environment and be able to react to
changes in the environment.

7. Open: an autonomic system must be portable across multi-
ple hardware and software architectures, and consequently
it must be built on standard and open protocols and inter-
faces.

8. Anticipatory: an autonomic system must be able to antic-
ipate, to the extent that it can, its needs and behaviors and
those of its context, and be able to manage itself proac-
tively.

Sample autonomic system/applications behaviors include
installing software when it detects that the software is missing
(self-configuring), restart a failed element (self-healing), ad-
just current workload when it observes an increase in capacity
(self-optimizing) and take resources offline if it detects that
these resources are compromised by external attacks (self-
protecting).
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Each of the attributes listed above are active research areas
towards realizing autonomic systems and applications. Gen-
erally, autonomic computing addresses these issues in an inte-
grated manner, i.e., configuration, optimizing, protection, and
healing. Further, autonomic management solutions typically
consists of the steps outlined above: (1) the application and
underlying information infrastructure provides information
to enable context and self awareness; (2) system/application
events trigger analysis, deduction and planning using system
knowledge; and (3) plans are executed using the adaptive capa-
bilities of the system. An autonomic system implements self-
managing attributes using the control loops described above to
collect information, makes decisions and adapt as necessary.

An autonomic application can be viewed as a set of in-
teracting components that component need to collaborate to
achieve coherent autonomic behavior. This requires acommon
set of underlying capabilities including representations and/or
mechanisms for solution knowledge, system administration,
problem determination, monitoring and analysis, policy def-
inition and enforcement and transaction measurements [7].
For example, a common solution knowledge capability cap-
tures install, configuration and maintenance information in a
consistent manner, and eliminates the complexity introduced
by heterogeneous tools and formats. Common administrative
console functions ranging from setup and configuration to
runtime monitoring and control provide a single platform to
host administrative functions across systems and applications.
Hence they enable users to manage solutions rather than man-
aging individual systems/applications. Problem determination
is one of the most basic capabilities for autonomic elements
and enables it to decide on appropriate actions when heal-
ing, optimizing, configuring or protecting itself. Autonomic
monitoring is a capability that provides an extensible runtime
environment to support the gathering and filtering of data ob-
tained through sensors. Complex analysis methodologies and
tools provide the power and flexibility required to perform
a range of analyses of sensor data, including deriving infor-
mation about resource configuration, status, offered workload
and throughput. A uniform approach to defining the policies is
necessary to support adaptations and govern decision-making
required by the autonomic system. Transaction measurements
are needed to understand how the resources of heterogeneous
systems combine into a distributed transaction execution en-
vironment. Using these measurements, analysis and plans can
be derived to change resource allocations to optimize perfor-
mance across these multiple systems as well as determine
potential bottlenecks in the system.

4. Autonomic computing system: The conceptual
architecture

Figure 5 presents the architecture of an autonomic comput-
ing system from the conceptual point of view. This architec-
ture directly derives from Ashby’s ultra-stable system (refer
figure 2). It consists of the following modules:
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Figure 5. Autonomic computing system: The conceptual view.

4.1. High performance computing environment

This comprises of the high performance computing applica-
tions and their execution environment. The autonomic system
is geared towards self-control and self-management of the
high performance computing environment.

4.2. Environment

The environment represents all the factors that can impact the
high performance computing system. The environment and
the high performance computing system can be two subsys-
tems forming a stable system (refer figure 2). Any change in
the environment causes the whole system to go from a stable
state to an unstable state. This change is then offset by reactive
changes in the high performance computing system causing
the system to move back from the unstable state to a differ-
ent stable state. Notice that the environment consists of two
parts—internal and external. The internal environment con-
sists of changes internal to the application that characterizes
the runtime state of the application. The external environment
can be thought of as characterizing the state of the execution
environment.

4.3. Control

At runtime, the High Performance Computing Environment
can be affected in different ways, for example, it can encounter
a failure during execution, it can be externally attacked or it
may slow down and affect the performance of the entire appli-
cation. It is the job of the Control to manage such situations as
they occur at runtime. The Control has the following engines
to execute its functionalities:

1. Monitoring and Analysis Engine (M&A): Monitors the
state of the high performance computing environment
through its sensors and analyzes the information.

2. Planning Engine (PE): Plans alternate execution strategies
(by selecting appropriate actions) to optimize the behav-
iors (e.g. to self-heal, self-optimize, self-protect etc.) and
operations of the high performance computing environ-
ment.

3. Knowledge Engine (KE): Provides the decision support to
the Control to pick up the appropriate rule from a set of
rules to improve the performance.

The Control realizes its control and management objectives
with the aid of two closed loop control sub-systems, triggered
by application and system sensors (reactive) and online pre-
dictive performance models (proactive), and will manage and
optimize application execution (refer figure 5).

4.3.1. Local control loop

The local or fine control loop will locally manage the behavior
of individual and local system elements on which the compo-
nents execute. This can be viewed as adding self-managing
capabilities to conventional components/elements. This loop
will control local algorithms, resource allocation strategies,
distribution and load balancing strategies, etc. Note that this
loop will only handle known environment states and the map-
ping of environment states to behaviors is encapsulated in its
knowledge engine (KE). For example, when the load on the
system resources exceeds the acceptable threshold value, the
fine loop control will balance the load by either controlling the
local resources or by reducing the size of the computational
loads. This will work only if the local resources can handle
the computational requirements. However, the fine loop con-
trol is blind to the overall behavior and thus cannot achieve
the desired overall objectives. Thus by itself it can lead to
sub-optimal behavior.

4.3.2. Global control loop

At some point, one of the essential variables of the system
eventually exceeds its limits that will trigger the global loop
control subsystem. The global control loop will manage the
behavior of the overall application and will define the knowl-
edge that will drive the local adaptations. This control loop can
handle unknown environment states and uses four cardinals for
monitoring and analysis of the high performance computing
environment i.e., performance, fault-tolerance, configuration
and security. These cardinals are analogous to the essential
variables described in Ashby’s ultra stable system model of
the autonomic nervous system [refer figure 2]. This control
loop acts towards changing the existing behavior of the high
performance computing environment such that it can adapt
itself to changes in the environment. For example, in the pre-
vious load-balancing scenario, the existing behavior of the
high performance computing environment (as directed by the
local loop) was to maintain its local load within prescribed
limits. Doing so blindly may degrade the performance of the
overall system. This change in the overall performance car-
dinal triggers the global loop. The global loop then selects
an alternate behavior pattern from the pool of behavior pat-
terns for this high performance computing environment. The
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Figure 6. Autonomic computing system: The implementation view.

Planning Engine (PE) determines the appropriate plan of ac-
tions using its Knowledge Engine (KE). Finally the Execution
Engine (EE) executes the new plan on the high performance
computing environment in order to adapt its behavior to the
new environment conditions.

The most important feature of the autonomic system is
the integrated approach of its controller. The controller unit
manages in an integrated manner performance, fault, secu-
rity and configuration of computing systems and their appli-
cations. In the classical paradigm, each of these properties
has been treated separately and in isolation. These practices
have contributed significantly to the control and management
challenges of large scale interacting and dynamic computing
systems and services. In the next section, we describe our ap-
proach to implement an autonomic computing system based
on the conceptual architecture.

5. Autonomic computing system frame work

Figure 6 illustrates the main modules to implement our au-
tonomic computing system framework that is inspired by the
Ashby’s ultra-stable system architecture (refer Section 2.1).

5.1. Application management editor

In this framework, the users and/or application developers can
specify the characteristics and requirements of their applica-
tions using an Application Management Editor (AME). Each
application can be expressed in terms of one or more auto-
nomic components. These components are expressed using
the Autonomic Component as will be discussed later. Once
the application is specified, the next step is to control and
manage the execution of the application at runtime using the

services and routines offered by the Autonomic Runtime Sys-
tem (ARS).

5.2. Autonomic Runtime System (ARS)

The Autonomic Runtime System (ARS) exploits the tempo-
ral and heterogeneous characteristics of the scientific com-
puting applications, and the architectural characteristics of
the computing and storage resources available at runtime to
achieve high-performance, scalable, and robust scientific sim-
ulations. ARS will provide appropriate control and manage-
ment services to deploy and configure the required software
and hardware resources to autonomously (e.g., self-optimize,
self-heal) run large-scale scientific applications in computing
environments. The local control loop is responsible for con-
trol and management of one autonomic component, while the
global control loop is responsible for the control and manage-
ment of an entire autonomic application.

The ARS can be viewed as an application-based operat-
ing system that provides applications with all the services
and tools required to achieve the desired autonomic behav-
iors (self-configuring, self-healing, self-optimizing, and self-
protection). The primary modules of ARS are the following:

5.2.1. Application Information and Knowledge (AIK)
repository

The AIK repository stores the runtime application status in-
formation, the application requirements, and knowledge about
optimal management strategies for both applications and sys-
tem resources that have proven to be successful and effective.
In addition, AIK contains Component Repository (CR) that
stores the components that are currently available for the users
to compose their applications with and Resource Repository
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1 While (Component ACA, is running) do
2 State= CRM, Monitoring (ACA,)

3 State Deviation=State Compare(State, DESIRED STATE)
4 If(state_deviation =TRUE)

3 CRMi Send_Event(State)

6 Event Server Notify ARM

7 Event Type=CRM Analysis (State)

8 If (CRM, 4, ) Then

3 Actions =CRM_Planning(State, Event_Type)

9

Autonomic_Service AS; € {AS 15 ASyeaAS inization A Ssecuriy
10 Execute AS, (Actions)
11 Else
12 Actions = ARM _Analysis (State, Event_Type)
13 Execute As, (Actions)
14 EndIf
15 EndIf
16 EndWhile

Figure 7. Self-management algorithm.

(RR) that keeps track of all resources that are currently regis-
tered in the environment.

5.2.2. Autonomic Middleware Services (AMS)

The AMS provides appropriate control and management ser-
vices to deploy and configure the required software and hard-
ware resources to run autonomously (e.g., self-optimize, self-
heal etc.). These runtime services maintain the autonomic
properties of applications and system resources at runtime.
To simplify the control and management tasks, we dedicate
one runtime service for each desired attribute or function-
ality such as self-healing, self-optimization, self-protection,
etc. The Event Server notifies the appropriate runtime service
whenever its events become true. The algorithm that is used to
achieve self- management for any service (self-healing, self-
optimizing, self-protecting, etc.) is shown in figure 7.

The Component Runtime Manager (CRM) monitors the
state of each active component to determine if there are any
severe deviations from the desired state (steps 1-3). When an
unacceptable change occurs in the component behavior, CRM
[12] generates an event into the Event Server, which notifies
ARM (steps 4—6). Furthermore, CRM analyzes the event and
determines the appropriate plan to handle that event (steps
7 and 8) and then executes the appropriate self-management
routines (steps 9-10). However, if the problem cannot be han-
dled by the CRM, the ARM is invoked to take the appropriate
management functions (steps 12—13) at a higher granularity
(e.g., migrate the components to another machine due to fail-
ure or degradation in performance).

5.2.3. Application Runtime Manager (ARM)—The global
control loop

The ARM focuses on setting up the application execution

environment and then maintaining its requirements at run-

time. The ARM performs online monitoring to collect the

status and state information using the component sensors. It
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analyzes component behaviors and detects any anomalies or
state changes reflected by out-of-bound values of the cardi-
nals (for example, degradation in performance, component
failure). The ARM generates the appropriate control and man-
agement plans as specified by the knowledge in its knowledge
repository. The plan generation process involves triggering
the appropriate rule from the list of rules (for the appropriate
service) in the knowledge repository. The ARM main mod-
ules include (1) Online Monitoring and Analysis, (2) Online
Planning, and (3) Autonomic Execution.

5.2.4. Event server

The Event server receives events from the Component Man-
agers (described in Section 5.3.2) that monitor components
and systems and then notifies the corresponding engines that
subscribed to these events.

5.2.5. Coordinator

The Coordinator is responsible for handling application ex-
ecution by coordinating between different AC (refer Section
5.3.1) across different coupled models.

5.3. High Performance Computing Environment (HPCE)

The HPCE consists of the high performance computing appli-
cation and the execution environment on which it runs. The
HPCE includes the following modules:

5.3.1. Autonomic components:
An autonomic component (AC) is the fundamental building
block for autonomic applications in our Autonomic Comput-
ing Framework (refer figure 6). An autonomic component is
a simple computational component with encapsulated rules,
constraints and mechanisms for self-management and dy-
namic interactions with other components. It extends tradi-
tional components [8,9] to define a self-contained modular
software unit of composition with specified interfaces and ex-
plicit context dependencies. The architecture of an autonomic
component is shown in figure 8 [10].

The AC implements three different interfaces for import-
ing/exporting the functionalities of the computational compo-
nent, sensing and changing the runtime state of the component

Autonomic Component
Component Runtime Manager (CRM)

Planning

Monitor
&
Analyze

Figure 8. Autonomic computing architecture.
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whenever is required and for managing all the attributes (e.g.,
performance, fault, security) of the computational component.

Functional port (I'): defines a set of functionalities provided
and used by the autonomic component. y € 2 x A, where
Q is the set of inputs and A is the set of outputs of the
components, and y defines a valid input-output set.

Control port (¥): is the set of tuples (o, &), where o is a
set of sensors and actuators exported by the component,
and £ is the constraint set that controls access to the sen-
sors/actuators. Sensors are interfaces that provide infor-
mation about the component while actuators are interfaces
for modifying the state of the component. Constraints are
based on state, context and/or high-level access polices,
and can control who invokes the interface, when and how
they are invoked.

Operational port (®). defines the interfaces to formulate, in-
ject and manage rules, and encapsulates a set of rules
that are used to manage the runtime behavior of the
autonomic component. Rules incorporate high-level guid-
ance and practical human knowledge in the form of con-
ditional if-then expressions, i.e., IF condition THEN ac-
tions. Condition is a logical combination of component
(and environment) sensors and events. Actions consist of
a sequence of invocations of components and/or system
sensors/actuators, and other interfaces. A rule fires when
its condition expression evaluates to be true which causes
the corresponding actions to be executed. Two types of
rules are defined here.

Behavior rules: control the runtime functional behaviors
of autonomic components and applications. For ex-
ample, behavior rules can control the algorithms,
data representations or input/output formats used by
a component and an application.

Interaction rules: control the interactions between com-
ponents, between components and their environ-
ments, and the coordination within an autonomic
application. For example, an interaction rule may
define where a component will get inputs and for-
ward outputs, define the communication mecha-
nisms used, and specify when the component inter-
acts with other components.

5.3.2. Component Runtime Manager (CRM)—The local
control loop

Each autonomic component has its own manager that is dele-
gated to manage its execution. It is the local control subsystem
described above. Its Monitoring and Analysis Engine moni-
tors the component and its context by using the Control (sen-
sor) port interface and analyzes that information to determine
the state of the component. The Planning Engine then checks
to see if that state (the condition in the ‘IF condition THEN
action) matches with any of the states for this component as
stored in the Knowledge Engine. If a match is detected, the PE
picks up the action corresponding to that state (condition) and
the Execution Engine executes that action on the autonomic
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component using its Control (actuator) port interface. In other
words one rule from all the set of rules for this component is
fired. These rules are stored in the Knowledge Engine. Note
that each rule is already assigned a priority level. The Plan-
ning Engine uses this information to manage multiple firings
and resolve conflicts [11]. As can be seen here, the local con-
trol loop is only capable of handling known application and
environment states.

5.3.3. Dynamic composition of autonomic components:

Coupled Component Architecture (CCA)

As described above, the application is developed as a compo-
sition of smaller autonomic components. This fact is depicted
in figure 6 where multiple ACs are coupled together to form
one coupled model. At runtime, as the execution proceeds,
new components might be added to the application workflow
and/or old components might be deleted. Thus the applica-
tion workflow dynamically changes its structure at runtime.
The autonomic components should have the capability of cou-
pling and interacting with other autonomic components just
as newly born cells within the human body, adapt into the ex-
isting cell-system automatically and dead cells are gracefully
deleted.

The composition of autonomic components consists of
defining an organization of components and the interactions
among these components. The organization of components is
based on the composition of functional ports (I"), and can be
defined as:

Coox rUCi, 3Tlcou SUTl¢i,

where Cy is an autonomic component, U Ci is a set of one
or more autonomic components, & denotes the relation “be
functionally composable with”, I'¢q ,, is the functions used by
component Cy, and UI'¢; , represents the functions provided
by the component set U Ci. This definition says that compo-
nent Cy is functionally composable with components U Ci,
when U Ci can provide all the functions required by Cy. This
is similar to the composition defined by component-based
frameworks such as the CORBA [9] and Web services.
Interactions among components define how and when
components interact, the interaction mechanism (messaging,
shared-memory, tuple-space) and coordination model (data-
driven or control-driven). For example, Ccaffeine [12,13] de-
fines interactions as function calls, CORBA [9] uses remote
method invocations, and Web services and Grid services [14]
communicate using XML messages. Interactions may be trig-
gered by an event or may be actively initiated by a component.
Dynamic composition introduces dynamism and uncer-
tainty into both aspects of composition described above, i.e.,
“which components are composed” and “how and when they
interact” are defined only at runtime. Compositions are often
represented as workflow graphs where nodes represent com-
ponents and edges represent interaction relationships between
the components. Using such a workflow graph representation
of composition, dynamic composition consists of (a) node
(component) dynamism—components are replaced, added
to or deleted from the workflow, and (b) edge (interaction)
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dynamism—interaction relationships are changed, added to
or deleted from the workflow.

In a HPCE there could be several autonomic applications
running. Each autonomic application has its own comput-
ing environment that we refer to it as Application Execution
Environment (AEE) and managed by the ARM as shown in
figure 6.

6. Illustrative example: Distributed wildfire simulation

In this section we introduce a wildfire simulation and then
show how we can automate such an application using our
Autonomic Computing Architecture and the proposed frame-
work.

6.1. Distributed wildfire simulation

The wildfire spread model, among other things predicts
average fire spread as the fire propagates based on both static
and dynamic conditions and allows uncertainty to be incor-
porated into the model by having certain fire spread input
parameters to be modeled as random variables sampled from
arbitrary probability distributions. This allows for a more re-
alistic approach to setting fire spread parameters that cannot
be determined with certainty. The model also allows for sim-
ple rules for forest fire fighting scenarios to be implemented
and thus provides a flexible platform for studying the effect
of pouring water on forest cells.

In our forest fire model, the forest is represented as a 2-D
cell-space composed of cells of dimensions 1 x b (I: length, b:
breadth). For each cell there are eight major wind directions N,
NE, NW, S, SE, SW, E, W.In our architecture, a group of such
individual cells will together constitute, a Computational Unit
(CU). The weather and vegetation conditions are assumed to
be uniform within a cell, but may vary in the entire cell space.
A cell interacts with its neighbors along all the eight directions
as listed in figure 9.

When a cell is ignited, its state will change from ‘“un-
burned” to “burning”. During its “burning” phase, the fire
will propagate to its eight neighbors along the eight direc-
tions. The direction and the value of the maximum fire spread
rate within the burning cell can be computed using Rother-
mel’s fire spread model [15], which takes into account the
wind speed and direction, the vegetation type, the fuel mois-
ture and terrain type, such as slope and aspect, in calculating
the fire spread rate. When the simulation time advances to the
ignition times of neighbors, the neighbor cells will ignite and
their states will change from “unburned” to “burning”. In a

NW | N MNE

W E
,)1\:

SW S SE

Figure 9. Fire directions after ignition.
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similar way, the fire would propagate to the neighbors of these
cells.

The wildfire simulation model used in this paper is based
on fireLib [16], which is a C function library for predicting
the spread rate and intensity of free-burning wildfires. We
parallelized the sequential version of the fire simulation using
MPI. This parallelized fire simulation divides the entire cell
space among multiple processors such that each processor
works on its own portion and exchanges the necessary data
with each other after each simulation time step.

6.2. Autonomic wildfire simulation

In this Section we will describe how to apply our Autonomic
Computing Framework to autonomously run the wildfire sim-
ulation as shown in figure 10.

6.2.1. General process

The Autonomic Runtime Manager is responsible for setting up
the execution environment for the wildfire application. Once
the application is running, ARM will manage the application
execution at runtime to improve performance, accuracy and
scalability.

The ARM main modules include (see figure 10) 1. On-
line Monitoring and Analysis, 2. Autonomic Planning and
Scheduling. The Online Monitoring module (step 1,2 and 6)
interfaces with different sensors located on each resource in-
volved in the execution of the wildfire simulation. Those sen-
sors monitor the current state of the fire simulation in terms of
the number and the locations of burning cells and unburned
cells. In addition, the sensors monitor the states of the re-
sources, such as the CPU load, available memory, network
load etc. The runtime state information is stored in a database.
The Online Analysis module (step 3) analyzes the runtime us-
age information of the wildfire simulation and then determines
whether or not the current workload distribution needs to be
changed.

The Autonomic Planning engine partitions the wildfire
simulation domain into sub-domains, such as Natural Regions
(NRs), where each region has the same temporal and spatial
characteristics (e.g., burned (NVRI), burning (NR2), and un-
burned regions (NR3)). Based on the objectives of the analysis
(e.g., accurate vs coarse simulations), the Autonomic Plan-
ning and Scheduling engine will use the resource capabil-
ity models as well as performance models associated with
the computations, and the knowledge repository to select the
appropriate wildfire models and parameters for each region
and then decompose the computational workloads for each
Natural Region into schedulable Computational Units (CUs)
(step 4). Based on the availability of computing resources and
their access policies, the Scheduler will dynamically schedule
the CUs to run on clusters of high performance workstations,
massive parallel computers, and/or distributed/shared mem-
ory multiprocessor systems (step 5). It is to be noted here that
the ARM hides the underlying heterogeneity of the execu-
tion environment from the user and can interface the wildfire
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Figure 10. Wildfire spread execution within the autonomic computing framework.

simulation to different types of execution models and differ-
ent types of resources harnessing the maximum utilization of
features and capabilities of the underlying environment.

6.2.2. Specific scenario

In this Section, we will apply the process described in the
previous section to the specific scenario of wildfire spread
shown in figure 11 and explain it in the light of figure 10.
Figure 11 shows the state of the wildfire simulation application
at three different instants of simulation time.

The user first composes the application and submits its
specifications using the framework application management
editor. In this step, the user defines the main tasks/components
and the specifications of each component such as—what veg-
etation map to use, which terrain map to use, which wind mod-
els to use, what is the problem size, what is the initial ignition
point, number of processors, OS and memory requirements
and so on. This information is stored in the AIK Repository
(refer Section 5.2.1). In addition, users define the policies that
must be followed to control and manage the application at
runtime. To do the planning efficiently, the ARM uses the
knowledge repository that stores the rules that need to be fol-
lowed for each condition and identifies the rules that must be
fired and consequently the actions that must be taken.

In this application, the entire cell space is divided into
smaller groups of cells and distributed on available resources
for execution. Each such group of cells form one or more
Computational Units (CU) that are defined according to the
Autonomic Component Architecture (refer Section 5.3.1).

With reference to figure 10, the Autonomic Runtime Man-
ager consists of two main modules. We explain below, the
roles played by each module in the execution and runtime
management of the wildfire simulation as shown by the three
scenarios in figure 11.

Figure 11. Fire propagation with time. The grid reflects resource allocation
plan to the application at runtime.
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(a) Online Monitoring and Analysis. The Online Mon-
itoring engine (refer figure 10) senses the state of the appli-
cation and the resources by using its sensors. The Analysis
engine uses this monitored information to determine whether
the repartitioning is needed. This module performs steps 1, 2,
3 and 6 as shown in figure 10.

Step 1, 2 and 6: Monitoring Module: The Online Mon-
itoring engine senses the state of the application and the re-
sources at runtime. The framework uses that information to
execute it’s runtime management functions.

Step 3: Analysis Module: The online analysis module an-
alyzes the monitored information and the resource load infor-
mation of the wildfire simulation pieces and then determines
whether or not re-partitioning is needed. The rule to be trig-
gered in this case is

IF Condition: load imbalance > threshhold
Then Action: Repartion

(b) Autonomic Planning and Scheduling. The ARM
self-optimizes the application execution by using the online
Planning engine that takes into account the application state
as well as the state of underlying computing resources.

Step 4: Partitioning: The autonomic planning module
partitions the cell domain into sub-domains based on the cur-
rent states of the application as well as the predicted states
of the next simulation steps. Different partitioning methods
can be integrated with the planning engine. The Natural Re-
gion method partitions the cell space into Natural Regions
(NRs)(e.g., burned (NR1), burning (NR2), and unburned re-
gions (NR3)). The Graph partitioning method [17] represents
the cell space as an undirected weighted graph with cells as
vertices and the computational complexity as weights. Thus
a graph partitioning for the fire simulation domain yields the
assignment of cells to processors. The planning engine also
uses a predictive model to estimate the cells that will be burn-
ing in the next simulation steps. Below we use the Natural
Region method to illustrate the partitioning process.

The initial partitioning is performed once before the start
of the execution. It uses the initial application information
provided by the user and the initial state of the execution
environment. For example, in figure 11 at time 7 = 0, the fire
has not yet started. Hence the partitioning into NR is done
based on the vegetation type of the cells and the terrain slope.
In figure 11, the cell space is partitioned into 2 NR. Each NR
has cells with the same or nearly the same vegetation type and
terrain topography. If NR1 has a steeper slope and vegetation
that burns faster, at runtime its resource requirement will be
more than that of NR2.

Repartitioning is performed more than once, dynamically
at runtime. It uses the runtime state of the CUs and that of the
resources to do the repartitioning as required. For example, in
figure 11 at time 7 = N, the fire starts propagating such that
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we have some burning cells (in red) and some unburned cells
(in green). The cell space is partitioned into five NRs such
that the burning area falls under one NR. Since the burning
cells perform maximum computation, NR2 (refer figure 11)
will require maximum number of resources at runtime. Con-
sequently, the Planning engine uses this information to change
its resource allocation plan such that NR2 gets the maximum
resources

Based on the objectives of the analysis (e.g., accuracy vs
speed), the Planning engine uses the resource capability mod-
els as well as runtime performance models associated with
the computations, and the knowledge repository to select the
appropriate components and parameters for each region and
then decompose the computational workloads for each natu-
ral region into schedulable Computational Units (CUs). Since
CUs are the actual schedulable computational units, the Plan-
ning engine partitions NR2 into finer grids (where each box
represents a CU—refer figure 11). This implies that NR2 has
the largest number of CUs as compared to the rest of the cell-
space.

Similarly, in figure 11 at time 7 = 2N, some of the cell-
space has burned while some are burning and the rest un-
burned. Since the burned cells do not perform as much com-
putation as they used to when they were burning, hence the
idle compute cycles wasted by them can be put to better use by
allocating them where required. Thus, as shown in figure 11,
NR3 is divided into four CUs as compared to twenty-seven
(27) CUs in NR2.

Step 5: Autonomic Scheduling. Based on the availability
of computing resources and their access policies, the scheduler
will dynamically schedule the CUs on clusters of computing
resources.

6.2.3. Experimental results and evaluation
Our experiments show that our autonomic computing frame-
work can significantly improve the performance of the wild
fire simulation. We have evaluated two application sizes. The
first problem size is a 256 * 256 cell space with 65536 cells
(64 K). The second problem has a 512 % 512 cell domain with
262144 cells (256 K). To introduce heterogeneous fire pat-
terns, the fire is started in the southwest region of the domain
and then propagates northeast along the wind direction until it
reaches the edge of the domain. In order to make the evaluation
for different problem sizes accurate, we maintain the same ra-
tio of burning cells to 17%; that is the total number of burning
cells when the simulation terminates is about 17% of the total
cells for both problem sizes. The experiments were conducted
with different number of processors on a Beowulf cluster.
Figure 12 shows the overall execution time with different
runtime partitioning approaches as well as the static schedul-
ing algorithm for two problem sizes and for different processor
configurations. For problem size 65536 cells on 8 processors
(see figure 12(a)) the ARM system with graph partitioning ap-
proach provides an improvement of 45% over static schedul-
ing, 3% over runtime optimization with the natural region
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Figure 12. Overall performance of different optimization approaches on different processor configurations. (a) Problem size 65536 cells. (b) Problem size
262144 cells.

partitioning approach. On 16 processors, these numbers are
45% and 6%. For problem size 262144 cells on 16 processors
(see figure 12(b)), the numbers are 44% and 3%, while, on 32
processors, they are 41% and 5%.

7. Research issues

Autonomic computing draws most of its principles from
the human autonomic nervous system that has developed
successful strategies to handle unprecedented complexity,
heterogeneity and uncertainty. We strongly believe autonomic
computing will lead to breakthrough in the way we design
and develop computing systems and applications/services.
Computing research has evolved in many isolated, loosely
coupled research fields as (security, fault tolerance, high per-
formance, Al, network, agent systems, etc.). Each discipline
has managed to deliver computing systems and services that
meet their target domains (e.g, High Performance Computing,
Fault Tolerance Computing). However, if the computing
systems and application would require to combine these
capabilities; i.e.,deliver computing systems that provide high
performance, secure, fault-tolerance, intelligent computing
systems and applications are not practically feasible and
available. Autonomic computing is the emerging computing
field that addresses all these issues in an integral way and can
be viewed as the computing field that will converge all these
disciplines in one filed — Autonomic Computing. However,
there are still many challenges that must be addressed by
the research community. In what follows, we highlight
some of these challenges (these are by no means a complete
list).

Programming paradigm research challenges

® Autonomic components and applications—how do we
express the autonomic properties such as self-healing,
self-optimizing, self-protection, etc. and how to integrate
that with new or existing components and applications.

* Adaptive Compositions of Applications—how can we
dynamically add, delete, and change the algorithm used
to implement each component at runtime

* Autonomizing Existing Applications/Tasks—how do
you convert an existing application and/or a task to
become autonomic.

Middleware/runtime research challenges

® Monitoring Services—how do we obtain information
about system and application states using off-the-shelf
Operating Systems.

® Check pointing of Systems and Applications.

® Integration Challenges—How do we integrate Al adap-
tive learning, data mining, performance modeling, and
apply them to self-control and management of applica-
tions and system resources at runtime.

o Self-Configuring and Self-Deployment—how do we dy-
namically configure/deploy heterogeneous computing
network and storage resources at runtime?

* Improving network-monitoring functions to protect, de-
tect potential threats, and achieve a level of decision-
making that allows for the redirection of key activities or
data.
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