ARMaDA: An Adaptive Application-Sensitive Partitioning
Framework for SAMR Applications*

Sumir Chandra and Manish Parashar
The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854 USA
E-mail: {sumir, parashar}@caip.rutgers.edu

ABSTRACT

Distributed implementations of dynamic adaptive mesh re-
finement techniques offer the potential for accurate so-
lutions of physically realistic models of complex physi-
cal phenomena. However, configuring and managing the
execution of these applications presents significant chal-
lenges in resource allocation, data-distribution and load-
balancing, communication and coordination, and runtime
management. This paper presents the design and evalua-
tion of the ARMaDA framework for adaptive application-
sensitive partitioning of dynamic structured adaptive mesh
refinement applications. The ARMaDA framework has
three components: application state characterization com-
ponent, octant-partitioner mapping policy-base, and adap-
tive meta-partitioner component that dynamically selects
and configures partitioning strategies at runtime based on
current application state. Experimental results show that
adaptive application-sensitive partitioning using the AR-
MaDA framework can improve application performance as
compared to non-adaptive partitioning.

KEY WORDS
Adaptive application-sensitive partitioning, Dynamic
SAMR applications.

1 Introduction

Dynamic adaptive mesh refinement (AMR) methods for
the solution of partial differential equations that employ
locally optimal approximations can yield highly advanta-
geous ratios for cost/accuracy when compared to methods
based upon static uniform approximations. Distributed im-
plementations of these techniques offer the potential for
accurate solutions of physically realistic models of com-
plex physical phenomenaand can provide new insights into
complex systems such as interacting black holes and neu-
tron stars, formations of galaxies, subsurface flows in oil

*The work presented here was supported in part by the National Sci-
ence Foundation via grants numbers ACI 9984357 (CAREERS), EIA
0103674 (NGS) and EIA-0120934 (ITR), and by DOE ASCI/ASAP (Cal-
tech) viagrant number PC295251. The authors would like to thank Johan
Steensland for access to Vampire in this research.

reservoirs and aquifers, and dynamic response of materi-
als to detonation. However, configuring and managing the
execution of these dynamic applications presents signifi-
cant challenges in resource allocation, data-distribution and
load-balancing, communication and coordination, and run-
time management.

The research presented in this paper is motivated by
the observation that no single partitioning scheme performs
the best for all types of applications and systems. Even
for a single application, the most suitable partitioning tech-
nique and associated partitioning parameters depend on in-
put parameters and the application’s runtime state. This
necessitates adaptive partitioning and runtime management
of these dynamic applications using an application-centric
characterization of domain-based partitioners.

This paper presents the design, implementation,
and evaluation of “ARMaDA” - an adaptive application-
sensitive partitioning framework for structured adaptive
mesh refinement (SAMR) applications. The framework has
three components: application state characterization com-
ponent, octant-partitioner mapping policy-base, and adap-
tive meta-partitioner component. The ARMaDA frame-
work described in this paper makes three key contributions:
(1) It establishes mechanisms for characterizing the state
of the adaptive application and abstracting current compu-
tational, communication and storage requirements, (2) It
determines the appropriate partitioning strategy by using
policies that map runtime state octants to suitable partition-
ers, and (3) It selects and configures the appropriate parti-
tioner and associated partitioning parameters and dynami-
cally switches these at runtime. The partitioners constitute
a selection from popular software tools such as GrACE [5]
and Vampire [7].

The rest of the paper is organized as follows. Sec-
tion 2 outlines the related research in dynamic adaptive
partitioning and load balancing. Section 3 briefly describes
an adaptive meta-partitioner for SAMR applications. Sec-
tion 4 details the design and implementation of the AR-
MaDA framework. The evaluation of the framework for
varied SAMR Kernels is presented in Section 5. Section 6
presents concluding remarks.

2 Related Work

There is ongoing research in the field of dynamic adap-
tive partitioning and dynamic load balancing for AMR ap-
plications. Whereas dynamic adaptive partitioning tech-
niques have been extensively investigated for unstructured
meshes, such schemes for structured grids are relatively un-
explored. Our goal is to adaptively manage dynamic appli-
cations on structured grids based on the runtime state using
a characterization of the available options.

PLUM [4] is a dynamic load-balancing strategy
for adaptive unstructured-grid computations that uses a
cost-metric model for efficient mesh adaptation. The
PLUM model uses computation, communication, and data-
remapping weights to implement accurate metrics that esti-
mate and compare the computational gain and the redistri-
bution cost of having a balanced workload after each mesh
adaptation step. The new partitioning and mapping are ac-
cepted if the computational gain is larger than the redistri-
bution cost.

The Unified Repartitioning Algorithm [6] is a paral-
lel adaptive repartitioning scheme for the dynamic load-
balancing of scientific simulations. A relative cost factor
is used to obtain a cost function to minimize the commu-
nication and data redistribution costs. In the initial parti-
tioning phase, repartitioning is performed on the coarsest
graph twice by alternative methods and the one with the
lowest cost is selected.

In the dynamic load balancing scheme for SAMR [3],
the moving-grid phase and splitting-grid phase execute in
parallel. In the moving-grid phase, load balancing is trig-
gered if there is imbalance after each adaptation. The
splitting-grid phase is invoked if imbalance still exists, and
it splits the grid along the longest dimension into two sub-
grids. Eventually, either the load is balanced or the mini-
mum allowable grid size is reached.

Our previous work presents the application-centric
characterization of domain-based partitioners for SAMR
applications and investigates the design of an adaptive
meta-partitioner [1, 8, 9]. In [2], we demonstrate applica-
tion performance improvement by an experimental study of
adaptive application-sensitive partitioning that uses a man-
ually formulated adaptive policy for the dynamic switching
of partitioners. The ARMaDA framework presented in this
paper is based on and extends previous research to charac-
terize application runtime state in an automated manner and
dynamically select and configure the appropriate partition-
ing strategy to be used. Moreover, this automated approach
does not require application characteristics to be known a
priori.

3 Adaptive Meta-partitioner for SAMR Ap-
plications

Fig. 1 illustrates the design of an adaptive meta-partitioner
for SAMR applications. Using the octant approach, the

- - -

Dynamic PAC Adaptive meta
partitioner

Partitioning technique

P®MC@EME |1— Invoke (P) —

Decision of
partitioning technique

SAMR application and paameters

Classification of
application's
current state

A [

Database of

partitioning techniques

Parallel computer system

Classification of
computer system’s
current state

c .

-~ -

Figure 1. Adaptive meta-partitioner selects appropriate parti-
tioner at runtime. Figure reproduced from [8]

runtime environment is characterized based on the appli-
cation state. The current octant is then used to select the
most appropriate partitioning technique P from a database
of available partitioning techniques. The selected parti-
tioner is configured with appropriate parameters such as
partitioning granularity and threshold, and then invoked
(using a common interface) to partition the SAMR grid hi-
erarchy. Such a mapping is derived based on an experimen-
tal characterization of partitioning techniques and applica-
tion states [8, 9]. We believe that such a meta-partitioner
will be able to significantly improve the efficiency and per-
formance of parallel/distributed SAMR applications.

4 ARMaDA Framework

The ARMaDA framework has three components: appli-
cation state characterization component, octant-partitioner
mapping policy-base, and adaptive meta-partitioner com-
ponent. The state characterization component implements
mechanisms that abstract the current application state in
terms of the computation/communication requirements, ap-
plication dynamics, and the nature of the adaptation. The
policy-base provides an association for mapping octants to
partitioners. Subsequently, the meta-partitioner component
dynamically sets the appropriate partitioner and associated
partitioning parameters at runtime.

Dynamic history of the application characteristics
enables better selection of the appropriate partitioning
strategy by using a “sliding history window” to avoid
thrashing and to obtain scaled ratios of the quality met-
ric. Thrashing may occur due to very frequent state
changes and can result in high overheads due to rapid
switching of partitioners. Moreover, fast algorithms are
used for sensing and characterizing runtime state to min-
imize the ARMaDA framework overheads. Application

state thresholds (LOW_THRESH and HIGH_THRESH)
determine when a change in partitioner and partition-
ing parameters is warranted. Application-specific met-
ric weights fine-tune the sensitivity of the quality met-
ric to closely match the needs of the dynamic applica-
tion. Additionally, state-sensing optimizations help to im-
prove the ARMaDA framework efficiency. If the applica-
tion state remains unchanged for a specific duration (set
by SAME_REGRID_LIMIT), the framework stops runtime
state sensing for SKIP_SAME_REGRID steps. Also, when
a change in runtime state causes a switch in partitioners,
the application characteristics do not significantly change
in the immediately succeeding stages. Hence, runtime state
sensing is paused for SKIP_SWITCH steps.

4.1 Runtime Characterization of Applica-
tion State

The current application state is abstracted from the existing
grid hierarchy and newly defined clusters at runtime, and
is expressed in terms of bounding boxes at various levels
of refinement. The application state is characterized in
terms of the computation/communication requirements,
application dynamics, and the nature of the adaptation.

Computation/Communication Requirements:

The computation-to-communication ratio (“CCratio”)
determines whether the current application state is
computationally-intensive or communication-dominated.
Using a simple geometrical analogy, the volume of the
application state bounding boxes at different levels of
refinement gives a measure of the computation expressed
in work units, whereas communication requirements are
represented by the surface area of the bounding boxes. The
ratio of the total volume to total surface area of the current
state bounding boxes determines CCratio.

> (Volume of bounding boxes)

CCratio = -
> (Surface area of bounding boxes)

Application Dynamics:

The application dynamics (“Dynamics”) indicates the
speed of application refinement pattern changes and is ex-
tracted as the degree of overlap between current application
state bounding boxes and those of the previous state. A
greater overlap region across states indicates that the appli-
cation has not changed significantly and has low dynamics.
A smaller intersection region represents high activity dy-
namics.

Dynamics = Size of (Current state N Previous state)

Nature of Adaptation:

The nature of the adaptation (“Adapt™) represents whether
the refinements are scattered or localized. A simple im-
plementation determines adaptation based on the geometri-
cal domain space occupied as compared to overall domain
under consideration as well as the number of coarse level

bounding boxes. A higher number of coarse boxes is an
indicator of possibly scattered refinements, typically giv-
ing rise to greater overheads. Since differences in adap-
tation overheads do not significantly affect partitioner per-
formance, this implementation suffices the assessment of
adaptation.

Coarse volume

Adapt = * No. of coarse boxes

" Domain volume

4.2 Determining Appropriate Partitioning
Strategy

As outlined above, the ARMaDA framework abstracts
measures of “CCratio”, “Dynamics”, and “Adapt” from the
current application state. Let M denote any one metric that
is abstracted from the current application state at regrid step
r, and curr M,. and prevM,. represent the current and pre-
vious metric measures. Note that prevM, = currM,_;.
The current state measures are normalized against previous
state measures to obtain current state factors. Hence, cur-
rent state factor for metric M (denoted as curr M factor)
is given by

currM,. currM,.
prevM_ currM,_;

T

currMfactor =

The current state factors are used in conjunction with
previous state factors to obtain the scaled metric ratios
(Mratio).

currMfactor currM,. x currM,._»

Mratio = =
prevMfactor (currM,._1)?

This equation indicates a three regrid-step history sliding
window size incorporated within the ARMaDA framework
for the dynamic application. The scaled metric ratio en-
sures that sudden glitches do not cause “run-away” metric
measures and arbitrarily large or small ratio values.

The ARMaDA framework computes three metric ra-
tios, namely computation/communication ratio (Cratio),
application dynamics ratio (Dratio), and the adaptation ra-
tio (Aratio). The three scaled metric ratios are then mapped
directly to octant positions using a three-bit binary pattern.
Let Mratio and Mbit represent the scaled ratio and the
octant-bit value for a particular metric M. If lowMwt
and highMwt denote the application metric weights for
the low and high thresholds respectively, then

Mbit = 0, Mratio < lowMwt*LOW_THRESH
= 1, Mratio > highMwt*HIGH_THRESH
— else, same as Mbit

The ARMaDA framework establishes the values for
three bits - “Cbit”, “Dbit”, and “Abit”, the combination
of which represent a specific octant location (0-7). A
low Cbit (Chit=0) represents more communication while
a high Cbit (Cbit=1) indicates greater computation. A low
Dbit (Dbit=0) indicates greater activity whereas a high Dbit

(Dbit=1) represents lesser application dynamics. A low
Abit (Abit=0) denotes more localized adaptation while a
high Abit (Abit=1) indicates that the nature of adaptation is
scattered.

CDA | ARMaDA | Octant Suitable
octant position partitioner
000 0 \Y pBD-ISP
001 1 Vi pBD-ISP
010 2 | pBD-ISP,
G-MISP+SP
011 3 I pBD-ISP
100 4 Vil G-MISP+SP
101 5 VIl G-MISP+SP,
SFC
110 6 Il G-MISP+SP,
SP-ISP, SFC
111 7 v G-MISP+SP,
SP-ISP, SFC

Table 1. ARMaDA framework octant implementation

Table 1 shows the framework implementation octants
representing various application states and their mapping to
the original octant positions and suitable partitioners based
on runtime state, as described in the octant approach [8, 9].
After octant characterization, the ARMaDA framework se-
lects and invokes the appropriate partitioner through a com-
mon interface.

5 Framework Evaluation

The evaluation of the ARMaDA framework is performed
for varied SAMR application kernels on different comput-
ing platforms. The experiments consist of measuring appli-
cation execution times for different partitioner configura-
tions using the ARMaDA framework. Except for the parti-
tioning strategy and the associated partitioning granularity,
all other application-specific and refinement-specific pa-
rameters are kept constant. The different partitioners in the
ARMaDA framework include SFC (GrACE), G-MISP+SP
(Vampire), pBD-ISP (Vampire), and adaptive combinations
of these partitioners based on runtime state. In the adaptive
run of the ARMaDA framework, the initial partitioner is
set by the user along with other partitioning parameters and
thresholds through a “param” file. The framework uses this
initial partitioner as the starting-point and then determines
the adaptive runtime strategy to be applied.

5.1 TportAMR-2D on “Discover”

“Discover” is a 16-node Linux Beowulf cluster at Rutgers
University. The experimental tests on Discover aim to eval-
uate the average performance of the ARMaDA adaptive
partitioning framework and ascertain the effect of initial
partitioner selection on the performance of the framework.

The Transport AMR 2D (TportAMR-2D) application
is a benchmark kernel solving the transport equation and is
primarily communication-dominated with high adaptation
overheads. The evaluation is performed for 8 processors
and the application uses a base grid of size 64*64 and 3
levels of factor 2 space-time refinements. Regriding is per-
formed every 4 time-steps at each level and the application
runs for 40 iterations. The experimental tests compare in-
dividual partitioner runs with the performance of the adap-
tive configurations based on the corresponding initial parti-
tioner. The application execution times for TportAMR-2D
application on 8 processors for different partitioning con-
figurations are listed in Table 2.

Partitioner SFC alone ARMaDA with
(no ARMaDA) SFC start

Execution 352.091 349.286

time (sec)

Partitioner G-MISP+SP ARMaDA with

alone G-MISP+SP start

(no ARMaDA) and thrashing

Execution 360.946 353.44

time (sec)

Partitioner | pBD-ISP alone | ARMaDA with
(no ARMaDA) pBD-ISP start

Execution 344.558 342.646

time (sec)

Table 2. ARMaDA evaluation for TportAMR-2D application on
8 processors on “Discover”

The TportAMR-2D application has a small domain
and is not computationally intensive but requires consid-
erable data movement. Since the pBD-ISP partitioner is
suited to strongly communication-dominated application
states and reduces communication and data migration costs
[8, 9], it is expected to perform better than the other par-
titioners. The ARMaDA partitioner with pBD-ISP start
fares the best (same as pBD-ISP scheme alone), conform-
ing to the above theory. If a different initial partitioner
is chosen, the ARMaDA adaptive partitioner dynamically
switches the initial partitioner and uses the pBD-ISP strat-
egy instead. For initial partitioners other than pBD-ISP, the
ARMaDA adaptive technique performs better than if the
corresponding scheme is used alone.

The framework overhead for this evaluation is in the
range of 40-100 milliseconds for the TportAMR-2D appli-
cation run with duration of around 350 seconds. Thrashing
also does not severely affect the ARMaDA framework per-
formance because the framework design and state-sensing
optimizations minimize the overheads of switching parti-
tioners. On account of small domain size, lesser computa-
tional grid-points, and fewer application features, the vari-
ous partitioners of the ARMaDA framework do not demon-
strate significantly different execution times for this evalu-
ation.

The choice of the initial partitioner affects the per-
formance of the ARMaDA framework - the framework is
good, in the worst case, and excellent when a suitable initial
partitioner is selected. When applied to adaptively man-
age SAMR applications whose runtime characteristics and
functional behavior are not known a priori, the ARMaDA
framework proves especially beneficial.

5.2 VectorWave-2D on “Discover”

The VectorWave-2D application is a coupled set of partial
differential equations and forms a part of the Cactus 2-D
numerical relativity toolkit, solving Einstein’s and gravita-
tional equations. The experimental evaluation on Discover
is performed for 16 processors and the application uses a
base grid of size 64*64 and 3 levels of factor 2 space-time
refinements. Regriding is performed every 4 time-steps at
each level and the application runs for 60 iterations. The
VectorWave-2D application execution times for individual
partitioner runs and the adaptive ARMaDA partitioner with
G-MISP+SP start are presented in Table 3.

Partitioner Execution

time (sec)

SFC 192.848

G-MISP+SP 174.263

pBD-ISP 188.199

ARMaDA with 172.703
G-MISP+SP start

Table 3. ARMaDA evaluation for VectorWave-2D application on
16 processors on “Discover”

The VectorWave-2D application is computationally-
intensive and requires good load-balancing and reduced
data migration overheads. G-MISP+SP and even pBD-ISP
are the preferred partitioners for such application states, as
verified in Table 3. In this evaluation, the ARMaDA par-
titioner with G-MISP+SP start gives the best performance
among the different partitioning configurations. The state
sensing and framework overhead in this case is 0.236 sec-
onds, which is negligible. The execution times are not sig-
nificantly different, which can be attributed to the small
problem domain size and fewer number of processors.

5.3 RM2D & RM3D on “Blue Horizon”

The NPACI IBM SP2 “Blue Horizon” is a teraflop-scale
Power3 based clustered SMP system at the San Diego Su-
percomputing Center. It supports shared-memory symmet-
ric multi-processing (via OpenMP or PThreads) within a
node and message passing (via MPI) between nodes. The
machine contains 1152 processors arranged as 144 SMP
compute nodes and 512 GB of main memory, with AlX as
the operating system.

The evaluation on Blue Horizon is performed on 64
processors using the 2-D (RM2D) and 3-D (RM3D) ver-
sions of the compressible turbulence application kernel
solving the Richtmyer-Meshkov instability. The 2-D ver-
sion has a base grid of size 128*32 and runs for 60 itera-
tions whereas the RM3D evaluation uses a base grid of size
128*32*32 and executes for 100 iterations. Both evalua-
tions use 3 levels of factor 2 space-time refinements and
regriding is performed every 4 time-steps at each level.

Run-times for ARMaDA partitioners for
RM2D application on 64 processors on "Blue Horizon"
(128*32 base grid size, 3 levels, 60 iterations)

w
=]
[=]

264 041

214.745 199 735 190431

[5]
=
=]

o
=]

Run-times (sec)

o

SFCor ISP G-MISP+EP pED-ISP ARMED S with

G-MISP+3SFP start
Partitioners

Figure 2. RM2D execution times for ARMaDA partitioners on
64 processors on “Blue Horizon”

Run-times for ARMaDA partitioners for
RM3D application on 64 processors on "Blue Horizon"
(1283232 base grid size, 3 levels, 100 iterations)
6000

5065 51
s000

4016 91

4000 3126.3

3000

2000
1000

Runtimes (se¢)

SFC orlsP pBD-ISP ARMaDAwith SFC start

P artitioners

Figure 3. RM3D execution times for ARMaDA partitioners on
64 processors on “Blue Horizon”

The application execution times for RM2D and
RM3D on 64 processors for different partitioning config-
urations in the ARMaDA framework are shown in Figs.
2 and 3 respectively. The application starts out with
greater computation requirements, low activity dynamics,
and more scattered adaptation, placing it in octant I1V. As
the application evolves, its communication requirements
assume greater significance. Moreover, the application ex-
hibits different dynamics and adaptations at different stages
during its execution. The pBD-ISP scheme improves com-
munication and data migration metric and is seen to per-
form better than the SFC and G-MISP+SP partitioners.
The ARMaDA adaptive partitioner starts out with the G-
MISP+SP or SFC partitioner as specified in the “param”
file. This partitioner is better suited for the initial stages of
the application. The adaptive policy formulated and used
by the ARMaDA framework for RM3D evaluation is listed

in Table 4.

Iteration | ARMaDA | Appropriate | Actual
number octant partitioner | octant
1-6 7 SFC AV
7-16 3 pBD-ISP |
17-26 6 SFC 11
27-36 3 pBD-ISP |
37-46 6 SFC 1l
47-56 3 pBD-ISP |
57-66 4 SFC VII
67-84 1 pBD-ISP VI
84-100 6 SFC 1l

Table 4. ARMaDA adaptive policy for RM3D application on 64
processors on “Blue Horizon”

The overheads associated with the ARMaDA frame-
work are low. For the RM2D and RM3D evaluations, the
overhead is measured to be 0.415 seconds and 1.85 sec-
onds respectively, and is minimal compared to the over-
all execution times. For the RM3D evaluation, the de-
fault ARMaDA settings used are SAME_REGRID_LIMIT
= 4, SKIP_SAME_REGRID = 4, SKIP_SWITCH = 4,
LOW_THRESH = 0.6, HIGH_THRESH = 1.4, and metric
weights (Cwt, Dwt, Awt) = 1.0.

These results demonstrate that adaptive application-
sensitive partitioning employed by the ARMaDA frame-
work improves application performance resulting in re-
duced execution times. The improvement yielded by the
ARMaDA framework for the RM2D application is 4.66%,
11.32%, and 27.88% over pBD-ISP, G-MISP+SP, and SFC
partitioners respectively. In the case of RM3D application,
the ARMaDA adaptive partitioner provides a speedup of
22.17% over the pBD-ISP partitioner and 38.28% over the
SFC scheme.

6 Conclusions

This paper presented the ARMaDA framework for the
adaptive application-sensitive partitioning of dynamic
structured adaptive mesh refinement applications. The re-
search was motivated by the observation that the choice
of the “appropriate” partitioning technique and associated
partitioning parameters depends on the nature of the ap-
plication and its runtime state. The ARMaDA framework
establishes mechanisms for characterizing the state of the
adaptive application and abstracting the current compu-
tational, communication and storage requirements. The
adaptive meta-partitioner component of the framework dy-
namically selects and configures partitioning strategies at
runtime. The partitioners constitute a selection from popu-
lar software tools such as GrACE and Vampire. The exper-
imental evaluation of the framework was presented using
the 2-D Transport AMR, 2-D Vector Wave, and 2-D and
3-D Richtmyer-Meshkov CFD kernels.

The goal of ARMaDA is to realize an adaptive
runtime environment that uses current runtime state to
meet application requirements, thereby maximizing its ef-
ficiency and performance. The overarching motivation is to
enable large-scale dynamically adaptive scientific and engi-
neering simulations on distributed, heterogeneous and dy-
namic execution environments such as the computational
“grid”.

References

[1] S. Chandra and M. Parashar. An Evaluation of Partitioners
for Parallel SAMR Applications. Proceedings of the Euro-
Par 2001, Springer-Verlag Lecture Notes in Computer Sci-
ence, Vol. 2150, pp. 171-174, August 2001.

[2] S. Chandra, J. Steensland. M. Parashar and J. Cummings.
An Experimental Study of Adaptive Application Sensitive
Partitioning Strategies for SAMR Applications. Proceedings
of the 2nd Los Alamos Computer Science Institute Sympo-
sium (also Best Research Poster at Supercomputing Confer-
ence 2001), October 2001.

[3] Z. Lan, V. Taylor and G. Bryan. Dynamic Load Balanc-
ing for Structured Adaptive Mesh Refinement Applications.
Proceedings of the 30th International Conference on Paral-
lel Processing, Valencia, Spain, 2001.

[4] L. Oliker and R. Biswas. PLUM: Parallel Load Balancing
for Adaptive Unstructured Meshes. Journal of Parallel and
Distributed Computing, 52(2), pp. 150-177, 1998.

[5] M. Parashar, J. Browne and et al. A Common Data Manage-
ment Infrastructure for Adaptive Algorithms for PDE So-
lutions. Proceedings of the Supercomputing Conference,
ACM/IEEE Computer Society, San Jose, CA, November
1997.

[6] K. Schloegel, G. Karypis and V. Kumar. A Unified Algo-
rithm for Load-balancing Adaptive Scientific Simulations.
Proceedings of the International Conference on Supercom-
puting, Dallas, TX, November 2000.

[7] J. Steensland. Vampire homepage, http://www.caip.rutgers.-
edu/johans/vampire, 2000.

[8] J. Steensland, S. Chandra and M. Parashar. An Application-
Centric Characterization of Domain-Based SFC Partitioners
for Parallel SAMR. accepted for publication in IEEE Trans-
actions on Parallel and Distributed Systems, April 2002.

[9] J. Steensland, S. Chandra, M. Thuné and M. Parashar.
Characterization of Domain-based Partitioners for Parallel
SAMR Applications. Proceedings of the IASTED Interna-
tional Conference on Parallel and Distributed Computing
and Systems, Las Vegas, NV, pp. 425-430, November 2000.

