
Pragma: An Infrastructure for Runtime Management of Grid Applications �

Manish Parashar
The Applied Software System Laboratory

Rutgers, The State University of New Jersey
Piscataway, NJ 08854, USA
parashar@caip.rutgers.edu

Salim Hariri
Dept. of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721, USA
hariri@ece.arizona.edu

Abstract

This paper presents an overview of Pragma, an adaptive
runtime infrastructure capable of reactively and proactively
managing and optimizing application execution using cur-
rent system and application state, predictive models for sys-
tem behavior and application performance, and an agent
based control network. The overarching motivation for this
research is to enable the next generation of very large-
scale dynamically adaptive scientific and engineering simu-
lations on widely distributed and highly heterogeneous and
dynamic execution environments such as the computational
“grid”. Pragma combines 4 key components: system char-
acterization and abstraction component, application char-
acterization component, active network control, and policy-
base. The design of Pragma is driven by three astrophysi-
cal simulations chosen to be representative of a wide va-
riety of important simulations and to expose many of the
problems presently encountered (and currently unsolved) by
computational physicists. The design, prototype implemen-
tation, and preliminary evaluations of Pragma components
are presented.

1 Introduction

Next-generation scientific and engineering simulations
of complex physical phenomena will be built on widely
distributed, highly heterogeneous and dynamic, networked
computational “grids” which will integrate scalable dis-
tributed (and heterogeneous) computing with interactive
control and computational steering, collaborative analysis,
visualization, and scientific databases and data archives.
These simulations will provide new and important insights
into complex systems such as interacting black holes and
neutron stars, formations of galaxies, subsurface flows in

�The work presented in this paper is supported by the National Science
Foundation NGS program via grant EIA-0103674

oil reservoirs and aquifers, and dynamic response of ma-
terials to detonation. However, configuring and managing
the execution of these applications to exploit the underlying
computational power in spite of its heterogeneity and dy-
namism presents many challenges. The overall goal of the
Pragma infrastructure is to realize a next-generation adap-
tive runtime infrastructure capable of reactively and proac-
tively managing and optimizing application execution using
current system and application state, predictive models for
system behavior and application performance, and an agent
based control network. The Pragma project addresses 3 key
research challenges:

1. Formulation of predictive performance functions that
hierarchically combine analytical, experimental and
empirical performance models for individual elements
of a heterogeneous, distributed computational environ-
ment, and use these functions along with current sys-
tem/network state information to anticipate the opera-
tions and expected performance of applications for a
given workload and system configuration.

2. Development of mechanisms for monitoring and char-
acterizing the state of adaptive applications and ab-
stracting their current computational, communication
and storage requirements, and using this information
to maximize application efficiency and performance.

3. Design, development and deployment of an active con-
trol network combining application sensors and actu-
ators and application management agents capable of
configuring application and execution environment at
runtime, allocating and setting up required resources,
monitoring application and system state, proactively
and reactively adapting the application and execution
environment to satisfy application requirements, main-
taining application quality of service, improving per-
formance and/or respond to system failures.

The design, development and evaluation of the Pragma
framework is being conducted in the context of a real-

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

world astrophysical hydrodynamics simulation using adap-
tive mesh refinement. Three-dimensional hydrodynamic
simulations are the key to understanding a wide variety of
astrophysical problems from the formation of structures in
the universe at the largest scales to the formation of stars
and their eventual explosion as supernovae. Accurate so-
lutions of realistic models offer the potential of dramatic
insights into complex astrophysical phenomena. This paper
present a design overview, and prototype implementation
and preliminary evaluations of Pragma components. The
rest of this paper is organized as follows. Section 2 outlines
the problem description enabling realistic simulations of as-
trophysical phenomenon. Section 3 describes the different
components of the Pragma framework for proactive and re-
active run-time management of grid applications. A Pragma
prototype case study on an adaptive meta-partitioner for
AMR applications is presented in Section 4. Section 5
presents concluding remarks.

2 Problem Description: Enabling Realistic
Simulations of Astrophysical Phenomenon

The design of Pragma is driven by specific problems in
astrophysical simulations. The problems are chosen to be
representative of a wide variety of important simulations
and to expose many of the problems presently encountered
(and currently unsolved) by computational physicists. Nu-
merical simulation of galaxy formation is one of the most
demanding in computational astrophysics. Galaxies are be-
lieved to have formed hierarchically; objects of progres-
sively larger mass merge and collapse to form new sys-
tems. Such a hierarchical build-up lacks any simplifying
symmetries and a full three-dimensional simulation is re-
quired. Similarly, multidimensional hydrodynamics in su-
pernovae from massive stars involve highly asymmetrical
and aspherical explosions and debris fields, and also require
3-D simulations with a wide range of spatial scales.

A key challenge in the astrophysical simulations outlined
above is that the physics represented in such calculations ex-
hibits multiple scales of length and time. If one were to em-
ploy zoning, which resolves the smallest scales, the required
number of computational zones would be prohibitive. One
solution is to use Adaptive Mesh Refinement (AMR) with
multiple independent timesteps (MIT), which allows the
grid resolution to adapt to a local estimate of the error in the
solution. With AMR, the number of zones and their location
in the problem space is continuously changing. With MIT,
the frequency with which the data in the zones is updated
can vary widely. Furthermore, a solution of the system’s
self-gravity requires the combination of hyperbolic hydro-
dynamic equations and elliptic Poisson’s equation with dif-
ferent communication and storage requirements. Another
challenge is that the local physics may change significantly

from zone to zone as fronts move through the system. The
heterogeneous and dynamic load per zone is a problem for
load-balancing schemes, which typically assign blocks of
physically adjacent zones to a single processor. Further-
more, the resource requirements of each zone in the sim-
ulation have to be predicted. Distributed implementations
of these astrophysical simulations thus lead to interesting
computational and computer science challenges in dynamic
resource allocation, data-distribution and load balancing,
communications and coordination, and resource manage-
ment. As a result, key requirements for the Pragma in-
clude Dynamic Partitioning Support, Adaptive Communica-
tion Support, and Dynamic Application Configuration Sup-
port. However, the complexity and heterogeneity of the en-
vironment make selection of a “best” match between sys-
tem resources, application algorithms, problem decompo-
sitions, mappings and load distributions, communication
mechanisms, etc., non-trivial. System dynamics coupled
with application adaptivity makes application configuration
and run-time management a significant challenge.

3 Pragma: A Framework of Proactive & Re-
active Runtime Management of Grid Ap-
plications

Pragma is composed of 4 key components: system char-
acterization and abstraction component, application charac-
terization component, active network control, and policy-
base. The system characterization and abstraction compo-
nent is responsible for abstracting the current state of the
underlying computational environments and for performing
a predictive analysis of its behavior. The application charac-
terization components abstract the current state of the adap-
tive (AMR) application in terms of its communication and
computational requirements and the natures and dynamics
of its grids. The active network control composed sensors,
actuators and management/policy agents of adaptive run-
time control. Finally, the policy-base is a programmable
database of adaptation polices that be used by the agents
and will drive the overall adaptation process.

3.1 System Characterization and Abstraction

The objective of the system characterization/abstraction
component is to monitor, abstract and characterize the cur-
rent state of the underlying computational environment, and
use this information to drive the predictive performance
functions and models that can estimate its performance in
the near future. Networked computational environments
such as the computational “grid” are highly dynamic in na-
ture. Thus, it is imperative that the application management
system be able to react to this dynamism and make runtime
decisions to ensure that the application’s requirements are

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

satisfied and its performance optimized. These decisions
include selecting the appropriate number, type, and config-
uration of the computing elements, appropriate distribution
and load-balancing schemes, the most efficient communi-
cation mechanism, as well as the right algorithms and pa-
rameters at the application level. Furthermore, proactive
application management by predicting system behavior will
enable a new generation of applications that can tolerate the
dynamics of the grid and truly exploit its computational ca-
pabilities. The Pragma system characterization component
builds on existing infrastructure, such as NWS [9].

3.2 Performance Analysis Module

The performance analysis module is built on Perfor-
mance Functions. Performance Functions (PF) describe the
behavior of a system component, subsystem or compound
system in terms of changes in one or more of its attributes.
For example, processor instructions (arithmetic, logical or
control) are normally characterized by the number of clock
cycles required to execute them. Using the PF concept, we
can characterize the operations and performance of any re-
source in a distributed environment. Once the PFs of each
resource used by an application are defined, we compose
these PFs to generate an overall end-to-end PF that char-
acterizes and quantifies application performance. Note that
the computation of overall PF function is analogous to the
calculation of end-to-end block transfer function from indi-
vidual block transfer functions in control system theory.

Our PF-based modeling approach includes three steps.
First, we identify the attributes that can accurately express
and quantify the operation and performance of a resource
(e.g., Clock speed, Error, Capacity). The second step is to
use experimental and analytical techniques to obtain the PF
that characterizes and quantifies the performance of each
system component in terms of these attributes. The final
step is to compose the component PFs to generate an overall
PF that can be used during runtime to estimate and project
the operation and performance of the application for any
system and network state. This composition approach is
based on the performance interpreting approach for parallel
and distributed application [5].

We illustrate our approach by using it to model and ana-
lyze a simple networked system. Our goal is to generate the
PF that describes the overall behavior of the system with re-
spect to the desired metric. This example system consists of
two Computers (PC1 and PC2) that are connected through
an Ethernet switch. We assume that PC1 performs a matrix
multiplication and upon completion, PC1 sends the result
to PC2 through the Switch. PC2 performs the same matrix
multiplication function and returns the result back to PC1
where the process is repeated. Using our approach we want
to find the performance function to analyze the response

time (delay) for the whole application. For simplicity, we
only consider the data size attribute and determine the ap-
plication response time with respect this attribute. For each
component, we measure the task processing time in terms
of data size, and then feed these measurements to a neural
network to obtain the corresponding PF. For our example,
we obtain the following three PFs; ��� (i=1) denotes the
PF associated with PC1, ��� (i=2) denotes PC2, and ���

(i=3) denotes the switch:

��� �

��
���

�
��

� � ������������

�
� �� (1)

where, �� , �� , �� , �� are constants and D is the data
size. The end-to-end performance function of whole sys-
tem (���������) is the summation of all the PFs:

������	

 � ����� � ��
����� � ����� (2)

Data Size ������������ Measured %Error
(bytes) end-to-end Delay

200 8.2759e-04 8.3187e-04 0.515
400 0.0011815 0.0011288 4.67
600 0.0014516 0.0015312 5.2
800 0.0017969 0.0018809 4.46

1000 0.0021705 0.00223055 2.7

Table 1. Accuracy of the Performance Functions.

Table 1 shows the error incurred in modeling the end-to-
end delay based on PF modeling approach is roughly be-
tween 0.5 - 5%. Details about the PF-based approach for
modeling large-scale distributed systems are found in [3].

3.3 Application Characterization

Dynamically adaptive application, such as the AMR-
based astrophysical simulation targeted in this proposal,
adapt their behavior based on the current state of the phys-
ical phenomenon being simulated. Unlike static applica-
tions where requirements are typically known a priori, the
requirements of these applications change as the applica-
tion progresses and therefore can only be determined at run-
time. The objective of Pragma’s application characteriza-
tion module is to abstract the state of the AMR application
in order to determine its current computational, communi-
cation, and storage requirements. This information can then
be used to determine an appropriate decomposition of the
application and mapping of the computations to available
processing elements of the computational environment, and
to drive the selection of appropriate algorithms and imple-
mentations both at the application level (solvers, precondi-

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

tioners) as well as the system level (communication mech-
anism). Note that the application characterization is archi-
tecture/system independent.

3.4 Agent-based Runtime Adaptation

The underlying mechanisms for adaptive run-time man-
agement of grid applications is realized by an active con-
trol network of sensors, actuators, and management agents.
This network overlays the application data-network and al-
lows application components to be interrogated, configured,
and deployed at runtime to continually ensure that applica-
tion requirements are satisfied in the most efficient manner.

Figure 1. CATALINA Architecture.

3.4.1 Agent-based Application Management

The Pragma application management approach builds
on and extends the management agents provided by
CATALINA [2]. CATALINA provides application devel-
opers with all the tools required to specify the appropriate
control and management schemes to maintain any quality
of service requirement or application attribute/functionality
(e.g., performance). It also provides core management ser-
vices to enable efficient proactive management of a wide
range of network applications.

The architecture of CATALINA is shown in Figure 1.
The Application Management Editor (AME) tool provides
application developers with the services required for speci-
fying and characterizing application requirements in terms
of performance, fault-tolerance and security, and for speci-
fying the appropriate management scheme for maintaining
application requirements. The next step utilizes the man-
agement services provided by the Management Comput-
ing System (MCS) to build the appropriate application ex-
ecution environment that can dynamically control the allo-
cated resources to maintain application requirements dur-
ing its execution. The MCS assigns an Application Del-

egated Manager (ADM) to manage one or more applica-
tion attributes (performance, fault, security, etc.). For each
task/component in the application, the ADM launches an
appropriate Component Agent (CA) to monitor execution
using appropriate component sensors. The CA intervenes
whenever component execution on the assigned machine
cannot meet its requirements using component actuators
that can suspend, save component execution state, or mi-
grate the component execution to another machine. For ex-
ample, to manage the component performance, ADM may
use active redundancy, passive redundancy, or may migrate
the task to a faster machine. The appropriate management
scheme is selected at runtime.

To configure the application execution environment, the
MCS searches for an appropriate template in the template
database that can meet all application requirements. The
template can be viewed as a blueprint of the application ex-
ecution environment. The CATALINA template registry is
being updated to use a JINI-based open architecture to allow
third party template registration and discovery. CATALINA
uses a Message Center (MC) for all the communications be-
tween its modules and agents. In the MC, every component
is assigned a port which acts as its mailbox. Every message
directed to a component is placed on this mailbox.

3.4.2 Sensors and Actuators for Active Adaptation

In addition to the management agents, sensors and actua-
tors need to be embedded within the application and/or sys-
tem software, as they define the adaptation interface and
implement the mechanics of adaptation. Application level
sensors and actuators are embedded within the application
source using high level programming abstractions. Further-
more, the sensors and actuators can be directly deployed
(and co-located) with the application’s computational data
structures in a straightforward manner. This approach has
been successfully used to embed and deploy sensors and ac-
tuators for interactive computational steering of large, dis-
tributed and adaptive applications both, by us [4] and others
[8]. System level sensors build on existing instrumentation-
based systems such as NWS, ReMoS, and Autopilot.

3.5 Adaptation “Policy” Knowledge-Base

The adaptation policy base maintains polices used by the
management agents to drive decision-making during run-
time application management and adaptation. Policies en-
code rules, heuristics and experiences that relate system and
application state abstraction to system/application configu-
rations, algorithms and mechanisms. For example: “If on a
networked cluster and AMR application is in octant VI use
latency-tolerant communication”, “If machine architecture
is X and application is in octant Y use data-decomposition

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

Z” or “If cache size of Y use refined grid components no
larger than Q”. This machinery enables us to construct a
library of selection strategies (templates) that encode, for
example, how to partition and map the grid hierarchy for a
strictly flux-conservative application with scattered highly
dynamic refinements patterns on a clusters of SMP’s. Pro-
grammability of the knowledge base will allow rules to be
modified, adapted and extended. On the management agent
side, the policy knowledge base will present an associative
interface that allows the agents to formulate partial queries
and use fuzzy reasoning. The policy knowledge-base con-
struction leverages off existing case-based reasoning sys-
tems and inference engines.

3.6 Adaptive Application Management

The key goal of Pragma is to develop policies and mech-
anisms for both “system sensitive” and “application sensi-
tive” runtime adaptations of AMR applications. The former
is driven by current system state and system performance
predictions while the latter is based on current application
state. The management agents in the active control network
then use these policies to actively manage the application.

System sensitive application management uses current
and predicted system state characterization to make appli-
cation adaptation decisions. For example, the information
about the current load and available memory may deter-
mine the granularity of the mapping of the application com-
ponents to processing nodes, while available communica-
tion bandwidths will determine the type of communication
strategy to be used. Similarly, application level algorithms
may be selected based on the type, specifications and sta-
tus of the underlying architecture. Finally, the availability
and “health” of computing elements on the grid may deter-
mine the nature (refined grid size, aspect ratios, etc.) of re-
finements to be allowed. Application sensitive adaptations
use the current state of the application to drive the runtime
adaptations. The abstraction and characterization of the ap-
plication state is used to drive the resource allocation, par-
titioning and mapping of application components onto the
grid, selection and configurations of partitioning and load-
balancing algorithms, communication mechanisms, etc.

4 Case Study: Engineering an Adaptive
Meta-Partitioner for AMR Applications

This section presents the design and operation of a pro-
totype Pragma component that implements an adaptive sys-
tem and application sensitive meta-partitioner for AMR ap-
plications. The overall motivation of the adaptive meta-
partitioner is to dynamically select the most appropriate
partitioning strategy at runtime, based on current applica-
tion and system state. Our preliminary studies with such an

adaptive partitioner have shown that using runtime adaptive
application management can significantly decrease applica-
tion execution time. Many factors contribute to the overall
runtime of an AMR application. Consequently, optimiz-
ing the runtime of these applications requires identifying an
optimal set of these parameters. Furthermore, the relation-
ships between the contributing factors might be highly in-
tricate, and depend on current application and system state.

4.1 Defining Partitioning Quality

The partitioning requirements for an adaptive application
(and the performance of a particular partitioner) depend on
the current state of the application and the computing en-
vironment. Therefore, it is of little consequence to discuss
the absolute “goodness” of a certain partitioning technique.
We base our characterization of partitioning behavior on the
tuple �partitioner, application, computer system�, (PAC).
Furthermore, we define a five-component metric to evaluate
each PAC. The goal of the metric is to capture the overall
runtime behavior of the partitioner. We believe that this is
critical to understanding the suitability of a particular parti-
tioner or why one PAC works better than another PAC. The
proposed metric for characterizing the quality of a PAC for
the adaptive SAMR meta-partitioner include Communica-
tion requirements, Load imbalance, Amount of data migra-
tion, Partitioning time, and Partitioning induced overheads.
Optimizing all these components implies conflicting objec-
tives. For example, optimizing the first two components
together constitutes an �� -hard problem. Partitioners typ-
ically optimize a subset of the components at the expense of
others. Our goal in defining this metric is to be able to read-
ily determine the trade-offs for each partitioning technique.

4.2 Defining Application State: The Octant Ap-
proach

Our characterization of AMR applications is based on
the Octant Approach [7] (Figure 2). In this approach, the
AMR application state is classified based on (a) its current
adaptation pattern (scattered or localized), (b) the current
dynamics of the phenomenon (e.g. a moving shock giving
rise to rapidly changing adaptations), and (c) whether its
runtime is dominated by computations or communications.
Application adaptation patterns determine the nature of the
computational domain, the granularity of computations, and
the required interactions between application components.
The application dynamics determine the rate (and possibly
nature) of changes in computation/communication require-
ments and how often load will have to be balanced. Finally,
the third dimension is a classical characterization of the ap-
plication as being dominated by computations or commu-
nications. Applications may start in one octant, then, as

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

solution progresses, migrate to others.

I II

III IV

VI

VIIIVII

V

More computation

More communication

More localized adaption More scattered adaptation

Less computation

Less communication

Higher activity dynamics

Lower activity dynamics

Figure 2. The octant approach for characterizing appli-
cation state based on its adaptation pattern, communica-
tion/computation requirements and activity dynamics.

4.3 Adaptive Selection of Partitioning Techniques

Previous research has investigated the selection of the
appropriate partitioner for a certain combination of the ap-
plication and computer system to reduce runtime. However,
the PAC tuple is a dynamic entity. The (A)pplication and
the (C)omputer system components are obviously chang-
ing. The choice of the (P)artitioner as static can be a serious
limitation. Consequently, we define the PAC relationship as
�� � ����	
��, indicating that the partitioning technique
� selected at a given time � should be a function of the state
of the application� and the computer system
 at that time.

The adaptive meta-partitioner for SAMR applications is
based on this idea. The runtime environment is character-
ized using the octant approach and current application and
system state. Based on the octant state, the most appro-
priate partitioning technique is selected from a database of
available partitioning techniques, configured with appropri-
ate parameters such as partitioning granularity and thresh-
old, and then invoked to partition the SAMR grid hierarchy.

4.4 Application Sensitive Adaptations

Application state information is used to identify the
partitioning requirements and to select the most appropri-
ate partitioner from a suite of available patch and domain
based partitioners. Available partitioners include Space-
Filling Curve based Partitioner (SFC), Variable Grain Ge-
ometric Multilevel Inverse Space-Filling Curve Partitioner
(G-MISP), Variable Grain Geometric Multilevel Inverse
Space-Filling Curve Partitioner with Sequence Partition-
ing (G-MISP+SP), p-Way Binary Dissection Inverse Space-
Filling Curve Partitioner (pBD-ISP), and Pure Sequence
Partitioner with Inverse Space-Filling Curve (SP-ISP). An
application-centric characterization of AMR partitioners
using a suite of “real-world” applications is presented in [7].

An application-centric characterization of the partition-
ers is obtained by first classifying the SAMR application
state using the octant approach, and identifying the parti-
tioning requirements of each octant. We then assign parti-
tioner(s) to application state-octants based on their ability
to meet the requirements of that octant. The associations of
application state octants to partitioning techniques are sum-
marized in Table 2. In the Pragma framework, this AMR
application characterization and mapping of partitioners to
application state define the polices for runtime adaptation.

Octant Scheme
I pBD-ISP, G-MISP+SP

II pBD-ISP
III G-MISP+SP, SP-ISP
IV G-MISP+SP, SP-ISP, ISP
V pBD-ISP

VI pBD-ISP
VII G-MISP+SP

VIII G-MISP+SP, ISP

Table 2. Recommendations for mapping octants onto par-
titioning schemes.

4.5 Experimental Evaluation of the Adaptive
Meta-Partitioner

The experimental evaluation of adaptive meta-
partitioning uses RM3D, a 3-D compressible turbulence
application solving the Richtmyer-Meshkov instability.
Application characterization consists of two steps. First,
the adaptive behavior of the application was captured in
an adaptation trace generated using a single processor run.
The adaptation trace contains snap-shots of the SAMR grid
hierarchy at each regrid step. This trace was then analyzed
using the octant approach and the adaptive partitioning
strategy was defined [1]. The application characterization
presented in this paper was performed manually. However,
we are currently developing agent-based mechanisms for
automatically performing the characterization at run-time.

In this experiment we used a base grid of size 128*32*32
and 3 levels of factor 2 space-time refinements. Regridding
was performed every 4 time-steps at each level. The ap-
plication ran for 800 coarse level time steps and the trace
consisted of over 200 snap-shots. A selection of these snap-
shots are shown in Fig. 3 and the octant-based characteriza-
tion of the RM3D trace is summarized in Table 3.

The experimental study of the adaptive meta-partitioner
was performed on the NPACI IBM SP2, Blue Horizon, at
the San Diego Supercomputing Center. The experiments
consisted of measuring application execution times for dif-

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

Figure 3. RM3D profile views at sampled time-steps.

Time-step Octant State Partitioner
0 IV G-MISP+SP
5 VII G-MISP+SP
25 I pBD-ISP

106 VI pBD-ISP
137 VIII G-MISP+SP
162 II pBD-ISP
174 V pBD-ISP
201 III G-MISP+SP

Table 3. Characterizing RM3D application run-time state
for partitioning behavior.

ferent processor configurations, with the partitioning pa-
rameters switched on-the-fly during application execution.

Partitioner Run-time Max. Load AMR
(sec) Imbalance(%) Efficiency(%)

SFC 484.502 24.878 98.8207
G-MISP+SP 405.062 11.3178 98.7778

pBD-ISP 414.952 35.0317 98.8582
“adaptive” 352.824 8.11825 98.7633

Table 4. Partitioner performance for RM3D application
on 64 processors.

The metric results for 64 processors are listed in Table 4.
Dynamically switching partitioners results in reduced run-
times, with 27.2% improvement over the slowest partitioner
for 64 processors. In the adaptive partitioner, G-MISP+SP
is used to improve load-balance when the application is
computationally dominated, while pBD-ISP reduces com-
munication and data-migration overheads.

4.6 System Sensitive Adaptations

System sensitive adaptation uses system state informa-
tion to appropriately configure the partitioners selected

based on the application state. Current system parameters
are obtained using NWS and are used to compute their rela-
tive computational capacities for the elements of the grid.
The system-sensitive partitioner for dynamic distribution
and load balancing then uses these relative capacities. For
example, let us assume � elements in computational grid.
The relative capacity
	 for the
�
 grid-element is defined
as the weighted sum of normalized values of the individ-
ual available CPU �	 , memory �	 , and link bandwidth
�	 capacities returned by NWS. Weights are application
dependent and reflect its computational, memory, and com-
munication requirements. Once the relative capacities of the
processors are computed, the workload is distributed pro-
portionately among them. The overall operation is shown
in Figure 4. Note that this discussion simply illustrates the
concept and does not make use of performance prediction
capabilities of the analysis module discussed above or the
agent based management capabilities.

Link Capacity

Capacity
Calculator

Heterogeneous
Partitioner

Partitions Application

Capacity
Available

Resource
CPU

Memory Monitoring
Tool

Weights

Figure 4. System sensitive adaptive AMR partitioning.

The system sensitive adaptive partitioner is evaluated
using the RM3D compressible turbulence kernel execut-
ing on a Linux-based workstation cluster. The kernel used
3 levels of factor 2 refinement on a base mesh of size
128x32x32. The cluster consisted of 32 nodes intercon-
nected by fast Ethernet (100MB). The experimental setup
consisted of a synthetic load generator (for simulating het-
erogeneous loads on the cluster nodes) and an external re-
source monitoring system. The evaluation consisted of
comparing the runtimes and load-balance generated for the
system sensitive partitioner with those for the default parti-
tioning scheme. This latter scheme performs an equal dis-
tribution of the workload on the processors.

The percentage improvement achieved using the system
sensitive partitioner over the default partitioner is listed in
Table 5. Relative capacities of the processors are calculated
only once before the start of the simulation in this experi-
ment. System sensitive partitioning reduced execution time
by about ��� in the case of 32 nodes. We believe that the
improvement will be more significant in the case of a clus-
ter with greater heterogeneity and load dynamics. Details
about system sensitive adaptations are available in [6].

7

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

Number of Processors Percentage Improvement
4 ��

8 ��

16 ���

32 ���

Table 5. Improvement due to system-sensitive adaptive
partitioning.

4.7 Agent-based Automated Adaptations in
Pragma

In the discussion above, we have illustrated the appli-
cation and system characterization and the adaptive appli-
cation runtime management using the system and applica-
tion adaptive partitioning as the example. Using application
management agents and the predictive system characteri-
zation models, Pragma extends this process to adaptively
manage all applications components in an automated, scal-
able, reliable, and efficient manner. For example, in the case
study, CATALINA agents resident at each computing ele-
ment in the distributed environment can be programmed to
monitor the current state of each processing element. Note
that the agents use information provided by the monitor-
ing system such as NWS and provide an application spe-
cific semantic interpretation of this raw data. Local state in-
formation is published to the message-center allowing each
agent to have direct and immediate access to all relevant
information to drive local adaptations. Furthermore, each
local agent can be programmed to monitor and publish ap-
plication related events. For example, a local agent is used
to generate events when the load reaches a certain thresh-
old - this event can then trigger repartitioning. Similarly, a
change in the effective communication bandwidth can trig-
ger a similar repartitioning coupled with a selection of a
partitioner and communication mechanism that can tolerate
the increased communication latency. The local agent uses
available state information, predictive performance func-
tions and the policy database to make local inferences, for
e.g. that local load needs to decrease by X% or the commu-
nication/computation ratio for local assignments has to be
improved by Y%. Local decisions are hierarchically consol-
idated by the application delegation manager agent (ADM).
This agent initiates changes in the system configurations or
requests additional resources as required. Final policy de-
cisions are then propagated to the individual local agents.
Note that each local agent is autonomous in that it does not
need to participate in the initial inference - the only require-
ment is that the AMD recommendations be complied with.

5 Conclusions

In this paper we presented an overview of Pragma, an
adaptive runtime infrastructure capable of reactively and
proactively managing and optimizing application execution
using current system and application state, predictive mod-
els for system behavior and application performance, and
an agent based control network. The overarching motiva-
tion for this research is to enable the next generation of
very large-scale dynamically adaptive scientific and engi-
neering simulations on widely distributed and highly het-
erogeneous and dynamic execution environments such as
the computational “grid”. Pragma combines 4 key com-
ponents: system characterization and abstraction compo-
nent, application characterization component, active net-
work control, and policy-base. The design of Pragma is
driven by three astrophysical simulations chosen to be rep-
resentative of a wide variety of important simulations and
to expose many of the problems presently encountered (and
currently unsolved) by computational physicists. The de-
sign, prototype implementation and preliminary evaluations
of Pragma components were presented.

References

[1] S. Chandra, J. Steensland, M. Parashar, and J. Cummings.
An Experimental Study of Adaptive Application Sensitive
Partitioning Strategies for SAMR Applications. 2nd LACSI
Symposium, Oct. 2001.

[2] S. Hariri and et al. CATALINA: A Smart Application Con-
trol and Management. submitted to the Active Middleware
Services Conference, 2000.

[3] S. Hariri, H. Xu, and A. Balamash. A Multilevel Modeling
and Analysis of Network-Centric Systems. Special Issue of
Microprocessors and Microsystems Journal, Elsevier Sci. on
Engineering Complex Computer Systems, 1999.

[4] S. Kaur, V. Mann, V. Matossian, R. Muralidhar, and
M. Parashar. Engineering a Distributed Computational Col-
laboratory. 34th Hawaii Intl. Conference on System Sciences,
Jan. 2001.

[5] M. Parashar and S. Hariri. Interpretive Performance Predic-
tion for Parallel Application Development. J. of Parallel and
Distributed Computing, vol. 60(1), 17-47, Jan. 2000.

[6] S. Sinha and M. Parashar. Adaptive Runtime Partitioning
of AMR Applications on Heterogeneous Clusters. 3rd IEEE
Intl. Conference on Cluster Computing, 435-442, 2001.

[7] J. Steensland, S. Chandra, M. Thune, and M. Parashar. Char-
acterization of Domain-based Partitioners for Parallel SAMR
Applications. PDCS, 425-430, Nov. 2000.

[8] J.S. Vetter and K. Schwan. Optimizations for language-
directed computational steering. IPPS 99, 1999.

[9] R. Wolski. Forecasting Network Performance to Support Dy-
namic Scheduling using the Network Weather Service. 6th
IEEE Symp. on HPDC, 1997.

8

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Rutgers University. Downloaded on November 22, 2008 at 10:56 from IEEE Xplore. Restrictions apply.

