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Abstract
Ant Colony Optimization (ACO) [8] is a non-

deterministic algorithm framework that mimics the forag-
ing behavior of ants to solve difficult optimization problems.
Several researchers have successfully applied ACO frame-
work in different fields of engineering, but never in VLSI
testing. In this paper, we first describe the basics of the
ACO framework and ways to formulate different optimiza-
tion problems within an ACO framework. We then present
our own ACO algorithm to simultaneously solve multiple
Boolean SAT instances for digital VLSI circuits. Experi-
ments conducted on scanned versions of ISCASÊ89 bench-
mark circuits produced astonishing results. ACO framework
for Boolean Satisifiability was found 200 times faster than
spectral meta-heuristics [36] run in combinational mode.

ACO framework has proven to be a promising optimiza-
tion technique in large number of other fields. Since ACO
can be used to solve different types of optimization and
search problems, we believe that the concepts presented in
this paper can open the gates for researchers solving dif-
ferent optimization problems that exist in VLSI testing more
efficiently.
1 Introduction

Social insects such as ants, bees, wasps, and termites ex-
hibit distributed control, local interaction and communica-
tion that help themselves organize. Grasse [17] first studied
the behavior of a kind of termites during the construction of
their nests and noticed that the coordinated behavior of these
insects during the construction process is influenced by the
structure of the construction themselves. They use the en-
vironment as a medium to represent their past behavior that
in turn influences their future behavior. Such a process is
termed self catalytic process i.e. the more a process occurs,
the higher its chances of occuring in the future.

Also, ants have the ability to find the shortest path
while searching for food. Ants indirectly communicate with
other ants by leaving a trail of chemical substance, called
pheromone, that guides other ants to take the shortest path.
Figure 1 shows a colony of ants searching for food. In Fig-
ure 1(a), ants start exploring all available paths while search-
ing for food. Figure 1(b) shows that eventually most of the
ants choose the shortest path. This indirect form of com-
munication, that enables ants to find shortest path, is called
stigmergy [17, 34].

Inspired by the self catalytic and stigmergytical ant be-
havior, Dorigo [10, 11] and his colleagues developed ant
colony optimization (ACO) meta-heuristic to solve diffi-
cult combinatorial optimization problems. The term meta-
heuristic means a general-purpose heuristic method de-
signed to guide an underlying problem-specific heuristic
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Figure 1: Foraging Ants. a) Ants start exploring, b) Eventu-
ally most of the ants choose the shortest path

(e.g. local search problem) toward promising regions of the
search space containing high-quality solution. Their algo-
rithm mimics the foraging behavior of ants to solve any op-
timization or search problem. They first applied ACO algo-
rithm to solve the traveling salesman problem and showed
that their solution converged very quickly to the optimal so-
lution. Since then, researchers working on a wide variety
of areas have successfully extended and applied ACO al-
gorithm to solve several optimization and search problems.
Table 1 gives a subset of recent work that uses ACO to solve
a wide variety of problem in different fields of engineering
and sciences.

Table 1: Application of ACO
Problem Citation

Network Routing [30, 31]
Quadratic Assignment Problem [14]

Vehicle Routing [13]
Mobile Network [12, 18]

Continuous Space Optimization [15]
Software Testing [22]

Macrocell Overlap Removal [1]
DNA Fragment Assembly [24]

There is a large number of optimization problems in
VLSI testing (see Table 2) that have been solved using dif-
ferent meta-heuristics, but never using ACO. This paper de-
scribes the basics of ACO and then presents an ACO frame-
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work for solving multiple Boolean SAT instances for digital
VLSI circuits. We strongly believe that the concepts de-
scribed in this paper can open the gates for researchers to
solve a variety of optimization problems in testing as well as
help to come up with more optimization problems for ACO
application in the field of VLSI testing. Our experiments
with ISCASÊ89 benchmark shows that ACO algorithm is up
to 200 times faster than spectral meta-heuristics [36].

Table 2: Optimization Problems in VLSI Testing
Problem Ref. Technique Used

Sequential Testing [19]
Partial Scan [20] Genetic algorithm

Scan Chain Partitioning [2]
and Re-ordering

Test Bus Architecture [29]
to Minimize Test Time
Combinational ATPG [4, 5] Neural Network

Delay Testing [6] Energy Minimization
TAM Designing [3] Integer Linear

Optimal Compacted [32] Programming
Test Set

Scan Chain Ordering [22] Simulated
SOC Test Scheduling [37] Annealing

Sequential Testing [7, 36] Spectral
BIST Response [21] Transform

Compaction

The rest of the paper is organized as follows. Section 2
describes the basics of ACO. In Section 3, we describe
our novel ACO framework to simultaneously solve multi-
ple Boolean SAT instances. In Section 4 we present results
and Section 5 presents conclusion and future work.

2 Basics of ACO
In the ACO meta-heuristic, a colony of artificial ants

(also called ants, in short) cooperates in finding global good
solutions to difficult optimization problems. Artificial ants
are an abstraction of real ant behavior. They are sometimes
enriched with some capabilities which do not find a natu-
ral counterpart. These capabilities make the artificial ants
more effective and efficient for solving a particular prob-
lem. Ants cooperate by means of the information they con-
currently read/write on the problemÊs state they visit. As
described earlier, natural ants leave pheromone trails while
moving. These pheromone trails evaporate over time, which
allows ant to forget its prior state. To mimic this behavior in
an ACO framework, artificial ants leave numeric informa-
tion called artificial pheromone trail (APT). APT left by an
artificial ant represents the current state and/or the history
of that ant. This stigmergetic form of communication us-
ing APT among individual ants guide all ants to obtain the
global optimal solution efficiently.

Artificial ants move from one problem state to adjacent
problem state using probabilistic decision policy, which is
a function of APT. Exact definition of state, adjacency, and
decision policy are problem specific. An important feature
of the decision policy is that it uses only local information
and does not use any lookahead mechanism to make a deci-
sion.

2.1 ACO for Traveling Salesman
We now describe an ACO framework (see Figure 2) for solv-
ing traveling salesman problem [9]. Initially, m ants are

generated that collectively works to build a shortest closed
tour of the given graph, where m=n and n is the total num-
ber of cities. When the kth ant, Ak, traverses an arc (i, j), it
deposits a quantity of pheromone Δτ k

ij (t) on this arc that is
given by

Δτk
ij(t) = 1/Lk(t) if(i, j) ∈ T k(t) (1)

= 0 otherwise

where T k(t) is ant AkÊs tour at iteration t, and Lk(t) is its
length. Thus, Δτ k

ij (t) represents how well the ant has per-
formed. The pheromone trail strength τ ij (t) is updated using
the equation given below

τij(t) ← (1 − ρ)τij(t) + Δτij(t) (2)

where Δτij (t) =
∑m

k=1 Δτk
ij (t) and ρ ∈ (0, 1] is the

pheromone trail decay co-efficient.
Each ant Ak also maintains a tabu list denoted by Tbk,

which is the set of cities that ant Ak has visited. All ants use
the tabu list to make sure that a particular city is not visited
twice. If an ant Ak is located at city i, then the probability
that it will move to city j is given by

pk
ij = aij(t)∑

ail(t)
(3)

where the summation in the denominator is done for the set
of all nodes l in the neighborhood of node i that the ant A k

is not visited yet. Here aij (t) is defined as

aij(t) = [τij(t)]
α[ηij ]β∑

[τil(t)]α[ηil]β
(4)

where the summation in the denominator is done for set of
all nodes l in neighborhood of node i, α and β are two pa-
rameters that control the relative weight of pheromone trail
and are set to 1 and 5 respectively, ηij=1/dij where dij rep-
resents the distance between city i and city j. The overall
algorithm for the ACO framework is given in Figure 2. The

1.
2.
3.
4.
5.

for i 1 to 3000
Generate m ants, one for each city
for j 1 to m

AcoForTSP(m)

for k 1 to m
Move ant A   to the next 

location using equation 3
k

6.
7.
8.

Update pheromone strength using equation 2
Print the best solution obtained

Save the best soln. generated in this iteration

Figure 2: ACO Algorithm for Traveling Salesman

simple ACO framework presented above for the traveling
salesman problem exhibited quick convergence to good so-
lutions. This stimulated the researchers to use ACO algo-
rithm for problems whose state space is dynamic.

2.2 ACO for Dynamic State Space
Routing packets in mobile ad hoc network is a dynamic
state space problem because the network topology and pa-
rameters in a mobile ad hoc network (MANET) changes
dynamically. Ducatelle et al. [12] proposed a multi-path
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routing algorithm called AntHocNet that can dynamically
learn the changing network parameters and efficiently route
data packets from one node to another node in a MANET.
It consists of reactive and proactive components. The reac-
tive component (RC) is invoked only when there is a request
for transmitting data from one node to another. In that case
RC launches reactive forward ants starting from the source
node to find multiple paths to the destination and backward
ants return to the source node to set up the path. A proac-
tive component is invoked while the data transmission is go-
ing on during which the paths are monitored, maintained
and improved proactively. From the ACO viewpoint, this
work presented the following key ideas: a) using two differ-
ent phases viz. the reactive phase and the proactive phase
in the top level ACO algorithm, b) using a combination of
both deterministic (for detecting and updating link failure)
and probabilistic approaches (ant movement), and c) using
different types of ants (forward ants and backward ants) to
perform different tasks.

So far, we saw how discrete combinatorial optimization
problem is solved using ACO framework. Ge et al. [15] de-
scribed an ACO algorithm to find global optima of a multi-
extreme continuous space function and is described next.

2.3 Continuous Search Space
We now describe an ACO framework to find global optima
of a multi-extreme continuous space function f (x). Here x
is a n-dimensional vector. The PowellÊs method [23] is a nu-
merical optimization technique to find global optima of con-
tinuous multi-extreme functions. A drawback of this tech-
nique is that this method often gets trapped in local optima
or by constraints in a region far from the optimal solution.
Ge et al. [15] describe a hybrid ACO algorithm, which in-
corporates the PowellÊs method to solve this problem.

The first step in their search involves dividing the solu-
tion space into several small regions Ri, i= 1, 2, . . . and
selecting an arbitrary point in each of these small regions.
Their search algorithm comprises two basic steps: a) global
search that uses ACO to identify one or more promising re-
gion ∈ Ri for search and b) local search using the Powell
method to perform optimization in a particular small region.
Let m be the total number of ants and let nodek(i) represent
the new location of ant k that is currently located at node i.
Here location of an ant means value of f (x) for some vector
x. First, they compute favg which represents the average
of all function values of m ants. All ants whose current lo-
cation is less than favg continues to perform global search
where as those ants whose location value is greater than
favg are perturbed probabilistically using the pheromone
trail strength. The pheromone trail strength, denoted by τ ,
is updated using the following two equations:

Δτk = c1f(xi) (5)

τ(j + 1) = ρτ(j) +
m∑

k=1

Δτk (6)

where c1 is a positive constant, and ρ ∈ (0, 1] is the
pheromone trail decay coefficient. Thus, when f (x i) is
large, then Δτk is also proportionally large, thereby, pro-
viding greater amount of pheromone to the optimal function
value. Thus, the key idea presented is to use a divide-and-
conquer approach to solve this problem using both global
search (ants) and local search (PowellÊs Method).

2.4 Avoiding Local Optima in ACO Frame-
work

We now describe a few advanced techniques that can be
used to guide ACO to avoid local minima. Stutzle and
Hoos [33] introduced the MAX-MIN ant system (MMAS)
that improves the performance of the ACO by: a) stronger
exploitation of the best solutions found during the search
and b) search space analysis. The key to achieve best per-
formance of ACO algorithm is to combine an improved ex-
ploitation of the best solutions found during the search with
an effective mechanism for avoiding early search stagnation.
The key differences between MMAS and a simple ACO are:
1. To exploit the best solutions found during an iteration or
during the run of the algorithm, after each iteration only one
single ant (global-best ant) adds pheromone.
2. To avoid stagnation of the search, the range of possible
pheromone trails on each solution component is limited to
an interval [τmin, τmax].
3. The pheromone trails are initialized to τmax to achieve a
higher exploration of solutions at the start of the algorithm.
4. Pheromone trail smoothing (PTS) facilitates the explo-
ration by increasing the probability of selecting solution
components with low pheromone trail.

Ouyang et al. [28] proposed a new ACO framework
called multi-group ant colony system to avoid stagnating
state. Once a group of ants arrive at local optimum point,
a new group of ants are initialized and the two groups to-
gether perform the search. If two groups are still in local op-
timum point state, a third group is initiated and three groups
search. The algorithm iterates until global best optimum
point is searched out.

In this section, we described the basics of ACO and
several ideas to formulate different optimization problems
within the ACO framework. In the next section, we describe
our novel ACO framework for Boolean satisfiability.

3 SAT for Digital VLSI Circuits Using ACO
Most SAT problems in the electronic design automation

(EDA) industry originates from digital VLSI circuits [35].
A traditional approach is to convert the circuit information
to conjuctive normal form (CNF). However, doing so re-
sults in the loss of circuit structural information. With CNF
form, it is not possible to take advantage of that information.
Hence, it is always desirable to develop a circuit-based SAT
solver [25, 35].

In this paper, our goal is to simultaneously solve mul-
tiple SAT instances for digital VLSI circuits using a novel
ACO framework. We solve multiple Boolean SAT prob-
lems simultaneously because such a tool can then be eas-
ily extended for solving test generation problem. Boolean
SAT instances are created using the ISCASÊ89 benchmark
circuits. For each primary output (PO)/pseudo-primary out-
put (PPO) we obtain two Boolean SAT instances, Bout and
Bout using the logic cone driving that particular PO/PPO,
labeled out. Here Bout represents the Boolean true func-
tion represented by the signal line out and Bout represents
the Boolean false function represented by the signal line
out. This means that for each circuit we will have a total of
2 × (Npo + Nff ) SAT instances, where Npo represents the
number of POs and Nff represents the number of flip-flop
in the circuit. P k

i will be used to denote the kth SAT prob-
lem, where i(=0, 1) represents the goal to generate Boolean
i at the PO/PPO corresponding to the problem. We will now
describe the key ingredients of our ACO framework: a) the
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artificial pheromone trail, b) the goal oriented ants, and c)
pheromone trail updation.

3.1 Artificial Pheromone Trail
We use two types of pheromone called 0-pheromone and
1-pheromone. For each signal line l in the circuit, we
use two variables denoted by p0(l) and p1(l) to repre-
sent the pheromone trail strengths for 0-pheromone and 1-
pheromone. The value p0(l) measures the degree of easiness
for generating a Boolean 0 at signal line l and p1(l) quan-
tifies the degree of easiness for generating a Boolean 1 at
signal line l. Pheromone strengths p0(l) and p1(l) will guide
the ants to take the right path to obtain the input assignment.

We initialize the pheromone strengths as follows. First,
we compute the SCOAP controllabilities (C0(l), C1(l)) [16]
values for each signal line l in the circuit. We then com-
pute (C0MAX , C1MAX) where C0MAX represents
the maximum value of 0-controllability of all signal lines
and C1MAX represents the maximum of 1-controllability
of all signal lines in the circuit. Then initial pheromone
strengths, p0(l) and p1(l) for each signal line l is computed
as

p0(l) := 2 × C0MAX − C0(l) (7)
p1(l) := 2 × C1MAX − C1(l) (8)

Our experiments indicate (see Section 4) that initializing the
pheromone strengths using the SCOAP measures represents
a good starting point for conducting the search.

3.2 Goal Oriented Artificial Ants
We use goal oriented ants i.e. each ant in our ant colony
has a particular goal at a given point of time, which can be
either to generate a Boolean 0 or a Boolean 1 at the current
signal line. Each time when an ant moves from the output
signal line of one gate to one of the input signal line (rules
for ant movement is described in Section 3.3) of this gate,
its goal changes according to the rules given in Table 3. For
AND, OR, and BUF the output goal is same as that of the
goal at the inputs. This is because for AND/OR/BUF to
generate output 1(0), the input should be set to 1(0). But for
NAND, NOR, and NOT generating 1(0) requires input(s)
be set to 0(1). Currently, our ACO framework does not sup-
port gates such as XOR/XNOR, multiplexors, AOI gates etc.
For designs containing these complex gates, one should use
standard cells describing these complex gates using primary
gates and flatten the design.

Table 3: Rules to Describe Ant Goal
AND/OR/BUF NAND/NOR/NOT

Current Goal New Goal Current Goal New Goal
1 1 1 0
0 0 0 1

3.3 Generating Ants and Ant Movement
For each SAT problem P k

i , we generate an ant Ak whose
goal is i. During each iteration, only a subset of these ants
participate in the search because two ants starting from the
same PO/PPO but with different goals are never generated.
We do this because both ants will never be able to simul-
taneously succeed as it is not possible to generate both 0
and a 1 at a particular PO/PPO simultaneously. Thus, we

only consider one ant for each PO/PPO. If an ant succeeds
in achieving its desired goal, then we add a new ant start-
ing from the same PO/PPO but with different goal. Thus,
in the first iteration we will have NINIT ants where NINIT

< Npo + Nff . After each iteration, since many ants will
succeed in achieving their goal, new ants will replace the
successful ants. If there are no more ants to replace, then in
the subsequent iterations the number of ants will be lesser
than NINIT .

All ants start traversal from its initial location i.e. a
PO/PPO in a concurrent fashion. The concurrent move-
ment of ants are simulated using the pseudo-code in Fig-
ure 3. Ants move from one signal line to another based on
the following movement rules. If the goal of the current
ant is to generate a 1(0) at the output of AND(OR) gate or
NOR(NAND) gate G, then the ant has to visit each one of
the inputs of G. In that case, its new goal is given by the
rules described in Section 3.2. However, if the goal is to gen-
erate a 0(1) at the output of AND(OR) gate or NOR(NAND)
gate G, then the ant need to visit only one of the input of
G with new goal determined again from the rules in Sec-
tion 3.2. The ant will pick that input in which it is most
easy to achieve the desired goal, which can be determined
from the pheromone strength. Section 3.4 describes how
pheromones are dynamically adjusted so that it will always
give a reasonably good measure of the degree of difficulty
of generating Boolean 1 and 0. When an ant Ak visits signal
line l, we also register its current goal in a variable RV (l).
If multiple ants visit the same signal line l with different
goals, then we register both the Boolean values by assign-
ing the value 2 to RV (l). These registered values RV (l) for
each signal line l is later used for updating the pheromone
strengths.

while(!isEmptyQueue(q))
{

//obtain the next ant from the queue to simulate
ant = getNextAntFromQueue(q);

if ( thisAntAchievedDesiredGoal(ant)
markThisAntDead(ant);

else

)

{

}
}

simulateAntMovement(ant);
insertTheAnt( &q, ant);

//take a subset of ant and insert them into the queue
insertADifferentSubsetOfAntsInQueue( &q, A);

Figure 3: Concurrent Ant Movement Using a Queue

3.4 Updating Pheromone and Generating In-
put Assignment

In this subsection, we will first describe how to find if a par-
ticular ant has achieved its desired objective. When a partic-
ular ant reaches a PI/PPI p, its goal is recorded in a variable
G(p). If multiple ants arrive at input p with different goals,
then we count the number of times goal 1 was recorded la-
beled as N1(p) and number of times a goal 0 was recorded
for the input p denoted by N0(p). If N1(p) > N0(p), then
G(p) is assigned a Boolean value 1, otherwise we assign a
Boolean value 0. When all ants reach the PI/PPI, then most
of the bits in the vector G are specified by 1 or 0. All un-
specified inputs are randomly assigned values 0 or 1. Vector
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G constitutes one test vector. Thus, we see that the test vec-
tor automatically emerges out due to the ant movement. We
then use a 3-valued logic simulator to find out if a Boolean 1
or 0 is generated at each PO/PPO. From these values, we can
figure out if a particular ant achieved its goal or not. If the
desired goal is achieved then the ant dies. Otherwise, it re-
mains in the subsequent iteration until it achieves its desired
goal. To update the pheromone strength, we use variable

Table 4: Rules to Update Pheromone Strength
V (l) RV (l) p0(l) p1(l)

0 0 Increment by 1 Do Nothing
0 1 Increment by 1 Decrement by 1
1 0 Decrement by 1 Increment by 1
1 1 Do Nothing Increment by 1

0/1 Not Reg. Do Nothing Do Nothing

RV (l) in each signal line l (see Section 3.3). The 3-valued
logic simulation of the test vector G will give us the logic
value V (l) generated at signal line l. Table 4 describes how
p0(l) and p1(l) is updated for each signal line l, based on
the values of RV (l) and V (l). In Row 1 of Table 4, V (l)=0,
RV (l)=0 means that the goal at signal line l was 0 and the
input assignment generated Boolean 0 at l. Since, this is
a favorable outcome, we strengthen the 0-pheromone by in-
crementing the p0(l) value, where as p1(l) remains the same.
In Row 2, V (l)=0, RV (l)=1 means that the goal was to gen-
erate Boolean 1 at l but the input assignments generated
Boolean 0. Hence ants with the goal of Boolean 1 are penal-
ized from moving towards l by decrementing p 1(l), where
as ants with goal of Boolean 0 are favored by incrementing
p0(l). The other three rows in Table 4 can be similarly ex-
plained. In the last row, Not Reg. means no Boolean goal
was registered at signal line l. Thus, the Boolean value gen-
erated by the input assignment at signal line l is compared
to the Boolean goal registered at l. This comparison is used
to adjust the pheromone strengths that will correctly guide
the ants in the subsequent iterations. The pseudo-code for
our overall ACO algorithm is given in Figure 4.

AcoForSat (ckt)
1. Obtain logic cone driving each PO/PPO

3.
4.
5.
6.
7.

for i 1 to 100
concurrentAntMovement();
Obtain input assignment
Logic simulate
Update pheromone

// see Figure 3
// see Section 3.4
// see Section 3.4
// see Table 4

2. Initialize pheromone strengths using eqn. 7 & 8 
// see Sections 3.1 & 3.2and generate ants

Figure 4: Pseudo Code for our ACO Framework

4 Results and Analysis
The proposed ACO framework was implemented in C

programming language and ISCASÊ89 benchmark circuits
were used to validate the theory presented in this paper. We
performed two experiments. In experiment 1, we initialized
the pheromone values to a constant value and in experiment
2, pheromones were initialized using the SCOAP measures
as described in Section 3.1. Table 5 shows the results of our
experiments. Column labeled Total SAT shows the total
number of SAT instances generated. Columns under head-
ing Without SCOAP corresponds to the results of experi-
ment 1 and With SCOAP corresponds to the results of ex-

periment 2. Columns labeled Det. represents the total num-
ber of SAT instances proven satisfiable and columns labeled
T ime represents the total CPU time in seconds. Columns
under the heading Spectral corresponds to the results of
spectral ATPG, a state-of-the-art test generation tool for dig-
ital VLSI circuits that was run in combinational mode. We
use spectral to compare our results because it also imple-
ments a non-deterministic algorithm using spectral trans-
form and selfish gene meta-heuristics.

Our experiments indicate that SCOAP measures gives a
good starting point for the ACO framework. Given the same
amount of time, ACO framework with SCOAP measure is
able to solve more number of SAT instances than the one
without using SCOAP measure. We also see that our ACO
framework consistently outperforms the spectral and selfish
gene meta-heuristic. For the circut s15850, spectral ATPG
tool had initialization problems and we are investigating its
cause. Spectral technique requires initializing and build-
ing large matrices. This consumes very large CPU time.
Since ACO framework does not need any compute intensive
or memory intensive opteration, so it is significantly faster.
One may argue that the proposed ant traversal is similar
to a backtrace procedure of ATPG algorithm, but note that
several ants concurrently traversing the netlist makes them
different and more effective than any conventional ATPG
search algorithm.

Disadvantages of our scheme are: a) it is an incom-
plete algorithm and cannot solve all SAT instances, and b)
it is a non-deterministic algorithm and cannot prove that a
SAT instance is unsatisfiable. Hence, a deterministic SAT
Solver [26, 27] may outperform the ACO algorithm as it
can prove that a SAT instance is satisfiable or unsatisfiable.
However, note that our algorithm consumes extremely short
CPU time. Thus, our algorithm can be used as a first pass
for determining satisfiability of large number of SAT in-
stances. A second pass using a deterministic tool can be
used to prove satisfiability of the instances aborted in the
first pass.
5 Conclusion and Future Work

In this paper, we presented an ant colony optimization
(ACO) framework to simultaneously solve multiple Boolean
SAT instances. Results of our experiments on scanned ver-
sions of ISCASÊ89 benchmark circuits indicate that ACO
algorithm can solve large number of SAT instances using
very short CPU time. Applications of the proposed ACO
algorithm are: a) Test generation, b) Generating patterns to
detect multiple faults, and c) Compaction, all of which con-
sumes extremely large CPU time. The proposed algorithm
can be used as a first pass to detect large number of faults
using very short CPU time. A deterministic algorithm can
be used to determine undetectable and hard to detect faults.

We also presented the basics of ACO and how differ-
ent types of optimization problems can be formulated within
the ACO framework. There are large numbers of optimiza-
tion problem (see Table 2) in the field of VLSI testing and
ACO can be used for solving all of these problems. How-
ever, many researchers in this field are unaware of the ACO
framework because ACO was never applied in the field of
testing. Hence, we believe that this paper can open the gates
for researchers solving different optimization problems that
exists in VLSI testing.
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