
Adaptive Memory Power Management Techniques

for HPC Workloads

Karthik Elangovan, Ivan Rodero, Manish Parashar

Center for Autonomic Computing

Rutgers University, Piscataway NJ, USA

{elankart, irodero, parashar}@cac.rutgers.edu

Francesc Guim, Isaac Hernandez

Intel Barcelona

Barcelona, Spain

{francesc.guim, isaac.l.hernandez}@intel.com

Abstract—The memory subsystem is responsible for a large
fraction of the energy consumed by compute nodes in High
Performance Computing (HPC) systems. The rapid increase in
the number of cores has been accompanied by a corresponding
increase in the DRAM capacity and bandwidth, and as a
result, the memory system consumes a significant amount of
the power budget available to a compute node. Consequently,
there is a broad research effort focused on power management
techniques using DRAM low-power modes. However, memory
power management continues to present many challenges.

In this paper, we study the potential of Dynamic Voltage
and Frequency Scaling (DVFS) of the memory subsystems, and
consider the ability to select different frequencies for different
memory channels. Our approach is based on tuning voltage and
frequency dynamically to maximize the energy savings while
maintaining performance degradation within tolerable limits. We
assume that HPC applications do not demand maximum band-
width throughout the entire period of execution. We can use these
low memory demand intervals to tune down the frequency and,
as a result, applications can tolerate a reduction in bandwidth to
save energy. In this paper, we study application channel access
patterns, and use these patterns to determine potential additional
energy savings that can be achieved by accordingly controlling
the channels independently. We then evaluate the proposed DVFS
algorithm using a novel hybrid evaluation methodology that
includes simulation as well as executions on real hardware. Our
results demonstrate the large potential of adaptive memory power
management techniques based on DVFS for HPC workloads.

I. INTRODUCTION

High Performance Computing (HPC) have evolved over the

past decades into increasingly complex and powerful systems.

The power demand of high-end HPC systems is increasing

eight-fold every year [1]. Current HPC systems consume

several MWs of power, enough to power small towns, and

are in fact soon approaching the limits of the power available

to them. The costs of power for these high end HPC systems

runs into millions of dollars per year. As a result, improving

energy efficiency can reduce the total cost of ownership (TCO)

of HPC systems. since reducing energy consumption not only

reduces energy costs but also reduced costs for cooling and

other packaging infrastructure.

The memory subsystem is responsible for a large fraction

of the energy consumed by compute nodes in HPC systems.

Barrosso et al. [2] indicate that over the years the CPU has

evolved to an extent where it accounts for only 50% of

energy consumption. As a result, reducing energy consumption

through intelligent control of all subsystems [3] is critical. The

rapid increase in the number of cores has been accompanied by

a corresponding increase in DRAM capacity and bandwidth.

The memory system thus consumes a significant amount of

the power budget available to a compute node, and therefore

the design of novel memory power management techniques

has become crucial.

Research efforts on the power management of the memory

subsystem have revealed that (1) DRAMs have multiple low-

power states, but only a very coarse level of power control, (2)

exploiting these low power states is difficult primarily because

of the latency associated with switching to/from low-power

modes, (3) throttling can reduce energy consumption, and (4)

architectural changes can take time to seep into the market and

only provided there are no negative impact on yield. However,

current memory power control methods have many limitations

and there is still lot of space for new both DRAM architectural

and software control approaches.

In this paper, we consider the ability to select different

frequencies for different memory channels and propose to

selectively lower the frequency of the main memory using

DVFS to reduce energy consumption. Our overall goal is

to tune voltage and frequency dynamically to maximize the

energy savings while maintaining performance degradation

within tolerable limits. HPC workloads typically exhibit good

locality, which enables Last Level Cache (LLC) to capture

most of the accesses to the main memory. Therefore we

can assume that HPC applications may not require maximum

bandwidth all the time and that the bandwidth demand of these

applications is different on the different memory channels.

As a result, the applications can tolerate some bandwidth

reduction in order to save energy. This research is motivated

by three observations: (1) reducing frequency and voltage

reduces power considerably, (2) the time required to perform

read and write operations are not significantly affected by

change in frequency, and (3) the iterative pattern exhibited

by most scientific application allows tuning voltage and fre-

quency dynamically based on access patterns. Furthermore, we

build on the fact that recent processors designs incorporates

multiple on-chip memory controllers and multiple channels for

parallelism, and specifically, that a channel can be monitored

and, operated at appropriate voltage and frequency levels

corresponding to application usage patterns. To maintain the

performance degradation within limits, we proposed a control

algorithm that, while evaluating the potential savings due to

DVFS prevents selecting frequencies that lead to significant

performance loss.

We evaluate the proposed DVFS algorithm using a novel

hybrid evaluation methodology that includes simulation as

well as executions on real hardware. We first study the applica-

tions channel access patterns, and then evaluate three possible

frequency selection strategies and two different algorithms for

mapping physical memory addresses to channels. The evalu-

ation is based on Intel Nehalem technology and demonstrates

the large potential of DVFS on memory utilization for HPC

workloads. Specifically, for the NAS Parallel Benchmarks,

the proposed control techniques provide around 55% memory

energy savings on average with only around 5% degradation

of execution time on average. We also observe that controlling

the channels independently provides considerable savings as

compared to controlling the frequency of all the channels

together, when applications exhibit uneven load.

The main contributions of this paper are summarized as

follows: (1) the study of memory access patterns, bandwidth

and channel usage for HPC workloads, (2) the design of a con-

trol algorithm for adaptive memory power management, (3) a

novel hybrid evaluation methodology that includes simulation

and executions on real hardware, and (4) an evaluation of the

proposed strategy on modern technology using different con-

figurations including number of memory channels, frequency

selection strategies, and physical address to channels mapping.

The rest of the paper is organized as follows. In Section

II, we review DRAM memories. In Section III, we discuss

related work. In Section IV, we describe our adaptive strategy

for memory power management. In Sections V and VI, we

present the evaluation methodology and the results obtained,

respectively. Finally, in Section VII, we conclude the paper

and outline directions for future work.

II. DRAM BACKGROUND

A. Memory System Organization

Data in a DRAM device has an array structure with multiple

rows and columns. The intersection of a row and column is a

storage cell, which is periodically refreshed because of gradual

data discharge. A row and column address can fetch only a

single bit from a single device in the array. Usually a number

of arrays are operated in parallel on each access. DRAM arrays

that act in unison on a request belong to the same bank, for

instance in a x4 DRAM four arrays act in parallel on each

access. The notation also indicates the column width (e.g., x8,

x16, x32 and x64 devices are commercially available). Figure

1 shows DRAM arrays grouped together.

Due to the DRAM organization the physical addresses

generated by applications cannot be used to directly access

DRAM, instead processors interface with DRAM through

memory controller which relieves the socket modules from

directly interfacing the DRAM. The memory controller has

to convert the physical addresses to a set of commands that

DRAM device understands. Physical addresses are split by the

On chip

Memory

Controller

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Bank

DIMM

Rank

Device

Fig. 1. DRAM subsystem with DRAM modules (left) and DIMM organiza-
tion with individual rank, bank and arrays inside each bank (right)

memory controller to identify a bank, then a row and column

within a bank.

Every DRAM operation (read/write) begins with an activate

command, which requires selecting a row with an appropriate

row address. The content of the entire row is transferred to the

sense amplifiers. Every bank has separate sense amplifiers and

each bank can be activated independently. Once the entire row

has been read it is said to be open and the bank is said to be

active. The next step is to select a column and then the content

of the column is placed on the data bus. DDRx SDRAMs

transfer data on both edges of the clock cycle. The final step is

to restore the data back to the cells with a pre-charge operation

that closes a row. The set of commands described previously

can be pipelined when accessing different banks in sequence,

and modern memory controllers exploit this to increase the

bandwidth.

The memory controller can close the row after a read/write

access with a pre-charge command. In closed page DRAMs,

rows are immediately closed after a row access command,

while in open page DRAMs, rows remain opened expecting

subsequent hits to the same row. In this study we evaluate only

closed page RAMs.

B. DRAM timing

The basic timing parameters for generic DRAM commands

that will be used throughout this paper are the following:

• tRCD : Time to move an entire row of data to the sense

amplifiers.

• tCAS : Time interval between column read command and

availability of data in the data bus.

• tCWL: Time interval between column write command

and availability of data in the data bus.

• tRAS : Time interval between row access and data restora-

tion back to the cells.

• tRP : Time taken to pre-charge a row.

• tRC : Minimum time interval that has to elapse between

different accesses to same row in a bank.

• tWR: Time to restore the write data from sense amplifiers

back to the cells.

Every read operation includes row activation (tRCD), col-

umn read (tCAS), data out (tBURST) and pre-charge (tRP).

The total time is tRCD + tCAS + tBURST + tRP . DDR3

devices can perform each of these operations in 10ns. The

timing parameters for the write operation are the same, except

the column access takes tCWL, and there is an additional tWR

waiting period to the end of the last data into sense amplifiers.

C. Voltage and Frequency Scaling

The JEDEC memory standards [4] are the specifications for

semiconductor memory circuits and similar storage devices

adopted by the JEDEC Solid State Technology Association.

They allow changing the input memory frequency, but the

transition should respect the timing parameters specified by

the standard; however, commercially available DRAM devices

do not support multiple voltage domains. In this paper, we

assume the DRAM to operate properly within the voltage

levels configurable using the BIOS settings. Table I lists

the voltage and frequency combinations considered in this

study for DDR3 SDRAM along with the power breakup of a

2GB DIMM (256x64) - calculated using power model in [5].

Note that the voltage range [1.575V–1.425V] is the allowable

voltage range of the power supply.

III. RELATED WORK

Over the last years, processors have evolved to become

energy efficient supporting multiple operating modes. At a

very coarse level, power management at the system level

consisted on monitoring the system load and shutting down

unused clusters or transitioning unused nodes to low power

modes [6]. Such algorithms are based on the availability of suf-

ficient idle periods and propose to batch work [6] to increase

the probability of such idle periods. Computing nodes incur

latency only when they exit from these low-power modes.

Other studies [7], [8], [9], [10] have proven that dynamically

varying the voltage and frequency proportional to system load

is effective in reducing energy consumption. DVFS provides

power savings at the cost of a small increase in execution time.

Other approaches conducted on power management techniques

are focused at the processor level, for example, Cai et al.

[11] propose a DVFS techniques based on the hardware thread

runtime characterization.

The previous approaches tackled the energy consumption

optimizations focused in the computing elements. Memory

devices, which were once considered to be undesirable candi-

dates for power consumption, began to significantly contribute

to overall system energy consumption. Just like processors,

DRAM devices have several low power modes. Delaluz et

al. [12] present software and hardware assisted methods for

memory power management. They studied compiler-directed

techniques [13], [12] , as well as OS-based approaches [14],

[15] to determine idle periods for transitioning devices to low-

power modes. Even though this approach is very conservative,

switching to/from low-power modes during unwanted periods

can be prevented; however it is not very effective on multi-core

systems. Cho et al. [16] studied assigning CPU frequencies

for DVFS that is memory-aware, because focus of all prior

work was on optimal assignment of frequencies to CPU, thus

ignoring memory. Huang et al. [17] proposed a power-aware

virtual memory implementation in the OS to reduce memory

energy consumption. Fradj et al. [18], [19] propose multi-

banking techniques that consist of setting individually banks

in lower power modes when they are not accessed.

Self-Monitoring [12] approach can be effective with a

control algorithm to chose between power modes for memory

devices. The key is to determine idle periods to transition

devices to low-power modes; however, self-monitoring control

algorithms are threshold-based, therefore, an algorithm that

transitions into low-power modes too frequently can increase

latency, while a very sluggish algorithm can miss out on

opportunities to save power. Li et al. [20], [21], [22] proposed

a self-tuning energy management algorithm to provide perfor-

mance guarantees. The algorithm tunes threshold parameters

at different points of execution. Diniz et al. [23] studied

dynamic approaches for limiting the power consumption of

main memory by limiting consumption and adjusting the

power states of the memory devices, as a function of the

memory load. Hur et al. [24] took an entire different approach

towards DRAM power management. DRAM commands are

delayed in memory controller to increase idle periods, and to

exploit low-power modes of DRAMs. Commands are delayed

in memory controller for a certain number of cycles which is

determined by a delay estimator.

Several architectural changes have also been proposed. Rank

subsetting [25] and Mini-Rank [26] tackle energy consumption

constraint by dividing a rank into subsets. This approach

reduces the number of chips which are put to work at each

memory access. Udipi et al. [27] suggested changes to internal

organization of DRAM devices. The authors argue that an

open-paged policy does not present any improvements for a

multi-core architecture because an opened row has one or two

hits on average. Building on that argument it is unnecessary

to read all the bits to the sense amplifiers, thus reducing

the number of bits that are touched can decrease the energy

consumption.

Deng et al. [28] proposed dynamic frequency scaling of

the main memory. The frequency of all memory channels is

changed to provide energy savings with guaranteed perfor-

mance degradation. David et al. [29] proposed and imple-

mented DVFS on actual hardware. Their control algorithm

monitors the bandwidth and dynamically varies the voltage

and frequency. Both concurrent research effort was focused

on performing DVFS on all the channels simultaneously while

the focus of our study has been clearly on evaluating the

potential of controlling the voltage and frequency of each

channel independently.

IV. ADAPTIVE MEMORY POWER MANAGEMENT

Our work has been primarily motivated by two characteris-

tics of the applications’ behavior: (1) bandwidth demand, and

(2) the memory access patterns. As mentioned previously, ap-

plications rarely demand peak bandwidth from main memory

since on chip caches work efficiently for capturing accesses to

main memory. LLC misses of an application can be used to

Frequency Voltage Pds(PRE STBY) Pds(ACT STBY) Pds(ACT) Pds(WR) Pds(RD) Pdq(RD) Pdq(WR)

(MHz) (V) (mW) (mW) (mW) (mW) (mW) (mW) (mW)

933 1.5750 252 466 226 919 793 96 620

800 1.5375 240 420 170 660 720 91 591

667 1.5000 229 400 104 457 514 87 562

533 1.4625 184 326 91 380 435 83 535

400 1.4250 131 232 65 271 310 79 508

TABLE I
FREQUENCY AND VOLTAGE LEVELS AND POWER BREAKUP OF A 2GB DIMM (256MX64) FROM [5]

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

Instructions(billions)

M
is

s
e
s
 p

e
r

1
0
0
0
 i
n
s
tr

u
c
ti
o
n
s

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

Instructions(billions)

M
is

s
e
s
 p

e
r

1
0
0
0
 i
n
s
tr

u
c
ti
o
n
s

Fig. 2. MPKI of NAS BT(top) and NAS FT (bottom)

derive bandwidth demand since it has positive correlation with

bandwidth. Figure 2 shows misses access, expressed as Misses

Per Kilo Instructions (MPKI) of two NAS benchmarks that

were collected using CMPSim as described in Section V, and

demonstrate the time varying behavior of both applications.

There are periods of high and low bandwidth demand, and

switching to a lower voltage and frequency during these

low bandwidth demand periods, applications will not suffer

significantly.

A. Channel Mappings from Physical Address

As described previously the processor cannot directly access

DRAM devices. The physical address is sent to the memory

controller which splits the address to first find the physical

channel, then the rank, and then the bank within a rank. The

process of identifying the channel number is proprietary to

each memory controller design, for instance, considering the

example shown in Figure 3 the physical address is divided to

address different parts of the device, and the Row ID is mapped

to the most significant bits so that subsequent addresses go

to the same row. We consider two different algorithms for

mapping memory physical addresses to channels:

• Default: Accesses are clustered to certain channels thus

reducing activity on other channels. This allows us to tune

Physical Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

Row

Bank

Col ID

Chan ID

Fig. 3. Channel mapping example

down the voltage and frequency of channels which are

relatively lightly loaded. For instance, with 4GB Physical

memory having 8 channels. Each channel can be used to

address 512MB of memory. If the Most Significant Bits

are used the resolve the channel address then accesses

to first 512MB will go to the first channel, accesses to

second 512MB will go to the second channel and so on.

• Interleaving: Load can be distributed across different

channels if subsequent cache lines are mapped to different

channels. This can be achieved by using Least Significant

Bits of the physical address to resolve the channel num-

ber.

Figures 4 and 5 illustrate how the algorithm for mapping

physical memory addressed to channels can significantly affect

the memory access pattern, and presumable the application

behavior.

B. Memory Access Patterns

Memory access patterns of three NAS Benchmarks were

collected using mptrace and CMPSim (see Section V). CMP-

Sim dumps processor specific information whenever a hard-

ware thread hits 109 instructions. Mptrace is used to obtain

the physical addresses accessed. The data is then processed

to obtain the channels access patterns using different channel

mapping algorithms. Figures 4 and 5 show the memory access

patterns for four, eight and sixteen channels. Access patterns

were collected for different regions (i.e., a block of instruc-

tions) of the application. The exact number of application

instructions for a region is not fixed, and varies with the

CMPSim output dump frequency (i.e., when a thread hits 109

instructions). The memory access patterns exhibited by appli-

cations motivate the use of the adaptive techniques proposed

in this work. Peak bandwidth is not always demanded by ap-

plications and there is unequal distribution of accesses across

channels. This asymmetry presents opportunities to control the

channels independently. The plots show that there is equal

1
2

3
4

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

Program Region

Channels

P
e
rc

e
n
ta

g
e
 o

f
c
h
a
n
n
e
l
a
c
c
e
s
s

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

0

5

10

15

20

25

Program Region

Channels
P

e
rc

e
n

ta
g

e
 o

f
c
h

a
n

n
e

l
a

c
c
e

s
s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

0

5

10

15

20

25

30

0

5

10

15

20

Program Region

Channels

P
e

rc
e

n
ta

g
e

 o
f

c
h

a
n

n
e

l
a

c
c
e

s
s

Fig. 4. Access pattern of NAS BT benchmark with 4 channels (left), 8 channels (center) and 16 channels (right) with Interleaving channel mapping algorithm

1 2 3 4

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

45

Program Region

Channels

P
e

rc
e

n
ta

g
e

 o
f

c
h

a
n

n
e

l
a

c
c
e

s
s

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

0

5

10

15

20

25

Program Region

Channels

P
e

rc
e

n
ta

g
e

 o
f

c
h

a
n

n
e

l
a

c
c
e

s
s

1 2 3 4 5 6 7 8 910111213141516

0

5

10

15

20

25

30

0

2

4

6

8

10

12

14

Program Region

Channels

P
e

rc
e

n
ta

g
e

 o
f

c
h

a
n

n
e

l
a

c
c
e

s
s

Fig. 5. Access pattern of NAS BT benchmark with 4 channels (left), 8 channels (center) and 16 channels (right) with Default channel mapping algorithm

distribution of traffic with 4 channels; however, with 8 and 16

channels the benchmark exhibits affinity in accessing a cer-

tain group of channels. Dynamically changing the frequency

is not going to affect the performance of the applications

significantly. Additional observation of access patterns shows

that channels can be further tuned independently because of

unequal distribution of traffic.

C. Control Algorithm

The control algorithm selects the operating voltage and

frequency of main memory. It is invoked on certain points

along the execution of the program, and uses observed system

parameters during current phase of execution to obtain possible

energy savings attainable at different operating states. The

operating state here refers to voltage and frequency levels

of channels. The control algorithm uses the power model

described in SectionV-D. It is possible to compute the input

parameters of the power model from the execution time. How-

ever, to prevent the power control algorithm from calculating

this parameter, it is advisable to use a counter. In addition, the

hardware should also have counters for LLC misses and total

instruction executed. The counter for LLC misses should be

maintained on a per-channel basis.

To calculate the power dissipation at other frequency set-

tings the execution time at all the other frequencies should

be found. Execution time in total number of cycles (TNC)

is given by Eq. 1 where ICPU is the total non-memory

instructions, Imem is the total memory instructions, CPImem

is cycles per memory instructions that can be found using the

performance model (described in Section V-C. If the control

algorithm is invoked at fixed intervals TNC will be known

for the current state. CPICPU can be computed using Eq.

1. CPICPU is constant at all the other states since changing

frequency will not affect non-memory instructions.

TNC = (ICPU × CPICPU) + (Imem × CPImem) (1)

The control algorithm performs the following sequence of

steps when it is invoked:

Step i: Read all the counters.

Step ii: Use the performance model to calculate the

execution time of the current phase at all the possible

voltage and frequency levels.

Step iii: Calculate the power consumed by the other

operating states.

Step iv: Calculate the energy savings for all the states,

i.e., savings compared to operating all the channels at

maximum frequency.

Step v: Choose a state for the next phase that maximizes

energy savings while keeping CPI degradation within a

specified limit.

With M possible operating frequencies and n channels we

can have Mn possible states. Since the complexity of the

control algorithm increases exponentially with the number

of channels, we have considered three possible frequency

selection strategies:

• Exhaustive Search: All the frequencies are considered in

this method (Mn possible states). The cost of executing

the control algorithm with this scheme becomes very high

with 8 and 16 channels.

• 3 Levels: Three frequency levels can be considered at

a time, for instance, if we start with 933MHz then

933MHz, 800MHz and 667MHz are considered for

the next phase. If 667MHz is selected for the next phase

then 800MHz, 667MHz and 533MHz are considered

for the next phase. With such a scheme the complexity

of the algorithm is reduced considerably.

• Ganged: The number of possible operating states can be

greatly reduced by slaving all the channels together, even

when all the five frequencies are considered, e.g., there

can be only 5 possible states.

V. EVALUATION METHODOLOGY

Since the actual implementation of DVFS is not available

for currently available hardware, the evaluation of the control

algorithm is performed using simulation. However, part of

input data of the control algorithm is obtained using tools that

run on the actual execution platform for which the simulator

is configured.

The CMPSim simulator is used to capture the time varying

behavior of the applications. The simulator was configured

to produce statistics when any hardware thread reaches 109

instructions. Since CMPSim can model the application be-

havior only until the LLC, mptrace is used to collect the

physical address traces of all the benchmarks. Results from

both CMPSim and mptrace are used as input by the control

algorithm along with a performance and a power model. The

performance model is used together with the LLC statistics

(CMPSim) and channel access ratios (mptrace) to find the

latency of read/write operations for all operating frequencies.

After obtaining the average latency for a given frequency

(fsys) from the performance model, the actual execution time

of the program at fsys can be computed using Eq. 2, where

Nc
′ is the total execution time (in cycles) after compensating

for LLC misses, and Nc is the total execution time (in

cycles) produced by the simulator assuming that LLC misses

are penalized with a 350 cycle latency, which is a standard

technology parameter.

Nc
′ = Nc − (350 × Misses) + (Latency × Misses) (2)

The execution time is then used to find the activity param-

eters that are computed for all possible operating states. Next,

the power model is used to obtain the power dissipation, and

the last step is selecting a state that provides maximum energy

savings within allowable CPI degradation limits.

A. CMPSim Simulator

CMPSim is a PIN [30][31] tool that intercepts memory

access operations that are fed to a Chip Multiprocessor (CMP)

cache simulator [32]. The model implements a detailed cache

hierarchy with DL1/IL1, UL2, UL3 and memory. The simu-

lator can be configured to model complex cache hierarchies,

e.g., a SMP machine with 32 cores sharing the L2 and L3. In

fact, the recent processor architectures can be modeled using

CMPSim.

CMPSim can capture cache behavior of single and multi-

threaded workloads. CMPSim can gather a wide variety of

statistics for an application, which are saved to an output file

periodically. The log file contains information about instruc-

tion profile, total number of cache accesses and misses at all

levels, and cache sharing between multiple threads, etc. Moses

et al. [33] present a very detailed study of CMPSim.

B. Mptrace

The Intel PIN project aims to provide dynamic instrumen-

tation techniques to gather information about the instructions

that applications execute. PIN API provides mechanisms to

implement callbacks that are called where specific events occur

on the execution of the target application (i.e., execution of

memory access operation).

Other tools that profile the the applications memory access

can be found in the PIN SDK. However, no PIN tool or

similar instrumentation tool has been provided to profile the

physical memory accesses that applications request. Mptrace

is a PIN-based tool that allows intercepting the processes

memory accesses, and translating the virtual addresses to

physical addresses. It uses the page map file [34] system to

translate the virtual address to physical address. The pagemap

file system was released with version 2.6.25 of the Linux

kernel and can be accessed through the /proc/pid/pagemap file.

As is described in the kernel source [34], this file allows a user

space process to find to which physical frame each virtual page

is mapped. It contains one 64-bit value for each virtual page,

containing the following data (from fs/proc/task mmu.c):

• Bits 0-54: page frame number (PFN) if present

• Bits 0-4: swap type if swapped

• Bits 5-54: swap offset if swapped

• Bits 55-60: page shift (page size = 1 page shift)

• Bit 61: reserved for future use

• Bit 62: page swapped

• Bit 63: page present

Server
Bank 3

Bank 2

Bank 1

Bank m

m
i

m
i

m
i

m
i

m
i

Fig. 6. Memory controller queueing model

Using the pagemap system, the mptrace PIN tools provides

several functionalities to characterize how the applications

access the physical memory pages. The format and information

required is highly customizable, it provides information related

to cache access (way and set), and memory accesses (physical

page address). It also provides ways to reduce the amount of

generated information, such as, sampling and trace disabling

when the application loads data, or the caches are warming up.

The current implementation of mptrace provides mechanisms

to characterize the memory accesses on the flight. Thus, this

PIN tool can provide summarized information about how an

application is using the main memory. For example, it pro-

vides page access histograms, or clusters of memory regions

accessed during an interval of time.

C. Performance Model

CMPSim assumes the main memory access latency of 350

cycles for both read and write operations. A memory access

(read/write) missing the LLC will incur the delays shown in

Eq. 3, where tr is the time for read access, tw is the time for

write access and td is the average queueing delay incurred by

a memory access. tr and tw include the time for a complete

data transfer from a DRAM device back to (or from) CPU.

An estimate of td is necessary to calculate the total delay as

described below.

Latency = tr + td (reads)

= tw + td (writes)
(3)

The memory controller (see Figure 6) maintains one pro-

cessing queue per bank, and λi is the arrival rate of requests on

channel i (we assume that all the banks are equally accessed).

The traffic distributes into all the queues equally. The request

at the head of each queue is serviced on a round-Robin basis.

Time to service a request includes the complete access time

(for read and write operations.). Since we model a closed

page DRAM, a read access includes row activation (tRCD),

column access (tCL), data transfer (tBURST) and a pre-charge

command to close the row (tRP). The timing parameter for a

write operation is similar except that the column access takes

tCWL, and there is a tWR interval between tBURST and tRP .

tR (tW) denotes the complete time interval required to perform

read (write) operation. The memory controller has a Poisson

arrival distribution, distributed service time, a single server

and m traffic streams. This is an M/G/1 queue with m users

polling for the server. The average waiting time of a request in

a queue (td) can now be estimated, and can be used to calculate

the latency. The probability mass function of service time of

a request is shown in Eqs. 4 – 7, where pR and pW represents

the probability that an access is read and write, respectively,

and λ, pR and pW can be calculated from data collected from

CMPSim and mptrace. Since we assume equal bank access,

the waiting time of a request in the queue is given by waiting

time of a M/G/1 queue.

fS(s) =

{

pR, s = tR
pW , s = tW

(4)

S = E{S} =
1

µ
(5)

S2 = E{S2} (6)

td =
λS2

2(1 − ρ)
(7)

CMPSim outputs instructions executed and LLC misses on

a per thread basis. This can be used to calculate the average

interval between any two LLC misses as shown in Eqs. 8 and

9, where we τ is the average gap between any two LLC misses,

αkj is the fraction of accesses from thread k going to channel

j. Parameter λ can be used to calculate average waiting time

of a request to channel j, and td can be used to correct the

total number of cycles elapsed.

τ =
Instructions Executed

LLC Misses
×

×
Cycles − (350 × LLC Misses)

(Instructions Executed − LLC Misses)
×

1

fCPU

(8)

λj =
α1j

τ1

+
α2j

τ2

+ · · · +
αkj

τk

(9)

D. Power Model

In our simulations we have calculated active power (PACT),

background power (PACT STBY and PPRE STBY), read and

write power (PRD and PWR) and termination power(Pterm)

according to the model for memory power described in [5].

The specific parameters required by the DRAM power model

are listed below.

• BNK PRE Percentage of cycles that DRAM spent in

pre-charge mode.

• RD Sch Percentage of DRAM cycles that were out-

putting read data.

• WR Sch Percentage of DRAM cycles that were out-

putting write data.

BNK PRE is used to compute background power while

RD Sch and WR Sch are used to compute read, write and

termination power. These parameters are described in detail

in [5], and they can be computed using the performance

model after obtaining the average latency of read and write

operations. Eq. 10 computes the energy consumption, where

P
f
total represents the total power dissipation, and Texec the

execution time at frequency f .

Ef = P
f
total × Texec (10)

BT FT CG
35

40

45

50

55
%

 E
n

e
rg

y
 S

a
v
in

g
s

Ganged

3 Levels

Exhaustive

BT FT CG
0

0.5

1

1.5

2

2.5

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

3 Levels

Exhaustive

BT FT CG
35

40

45

50

55

60

%
 E

n
e

rg
y
 S

a
v
in

g
s

Ganged

3 Levels

Exhaustive

BT FT CG
0

0.5

1

1.5

2

2.5

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

3 Levels

Exhaustive

Fig. 7. Percentage energy savings and increase in execution time with 4 channels. Interleaving (left) and Default (right) mapping

BT FT CG
35

40

45

50

55

60

%
 E

n
e

rg
y
 S

a
v
in

g
s

Ganged

3 Levels

BT FT CG
0

2

4

6

8

10

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

3 Levels

BT FT CG
35

40

45

50

55

60

%
 E

n
e

rg
y
 S

a
v
in

g
s

Ganged

3 Levels

BT FT CG
0

2

4

6

8

10

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

3 Levels

Fig. 8. Percentage energy savings and increase in execution time with 8 channels. Interleaving (left) and Default (right) mapping

BT FT CG
35

40

45

50

55

60

%
 E

n
e

rg
y
 S

a
v
in

g
s

Ganged

BT FT CG
0

2

4

6

8

10

12

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

BT FT CG
35

40

45

50

55

60

%
 E

n
e

rg
y
 S

a
v
in

g
s

Ganged

BT FT CG
0

2

4

6

8

10

12

%
 I

n
c
re

a
s
e

 i
n

 E
x
e

c
u

ti
o

n
 T

im
e

Ganged

Fig. 9. Percentage energy savings and increase in execution time with 16 channels. Interleaving (left) and Default (right) mapping

VI. RESULTS

NAS Parallel Benchmarks were used to evaluate the po-

tential of adaptive DRAM power management. CMPSim was

used to collect statistics of benchmark execution for the

configuration in Table II and the power model described in [5].

Memory access patterns of benchmarks were obtained using

mptrace on actual hardware (same configuration as shown in

table II). We collected results for 4, 8 and 16 DDR3 channels

with 2GB of physical memory in each channel. Control

algorithm was configured to sacrifice up to 5% degradation

in CPI when choosing the next state. Energy savings and

increase in total execution time of the benchmarks for varying

number of channels, mapping algorithms and frequency selec-

tion methods are discussed in this section. Percentage increase

is calculated with respect to running the benchmark with all

the channels operated at maximum frequency. Energy savings

reported in this paper are savings in main memory and not

the system as a whole. Results show the potential of adaptive

memory power management to obtain significant savings with

5% degradation.

Figure 7 shows the energy savings and the increase in

the execution time obtained with a 4 channel DDR3 system

using three frequency selection strategies and two channel

mapping policies. Average energy savings for BT, FT and

CG benchmarks were 42.95%, 51.33% and 52.19%, and the

increase in execution time is lower than 2.5%. with all the three

benchmarks. Both the mapping algorithms display the same

trend with all the frequency selection methods. Investigating

Feature Specification

Cores 8 Cores, 2 HW threads per core, 2.4GHz

L1 Cache 32KB, 8-way set associative

L2 Cache 256KB, 16-way set associative 5cycles/hit

L3 Cache 16MB, 4-way set associative 15 cycles/hit

TABLE II
CHARACTERISTICS OF THE SIMULATED ARCHITECTURE

dynamic behavior of the benchmark will enable us to better

understand the results . Figures 10 and 11 show the dynamic

behavior of two NAS benchmarks. Energy savings with 3

Level search are higher than exhaustive frequency search for

BT. This can be explained by looking at Figure 10, operating

frequencies of the channels with exhaustive search are similar

to 3 level search except for the 900MHz switch which was

avoided by 3 Level search. Figure 7 also shows that with

Exhaustive search the increase in execution time is the lowest

with respect to the other policies. In both the cases the control

algorithm transitions the system to the lowest frequency that

is available and the channels are switched back to higher

frequencies only during periods of high bandwidth demand.

This behavior is conformant with our assumption that HPC

applications can sacrifice performance for savings in energy

because of existence of periods of high and low bandwidth

demands.

Figure 11 shows the channel operating frequencies for FT

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−2

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−3

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−4

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−2

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−3

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6
300

400

500

600

700

800

900

1000
Channel−4

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 1 2 3 4 5 6 7
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

X

Fig. 10. Operating frequency per channel at different points of execution of NAS BT with Exhaustive (left), 3 Levels (center), and Ganged (right)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−2

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−3

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−4

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−2

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−3

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−4

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

0 2 4 6 8 10
300

400

500

600

700

800

900

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M

H
z
)

X

Fig. 11. Operating frequency per channel at different points of execution of NAS FT with Exhaustive (left), 3 Levels (center), and Ganged (right)

0 2 4 6 8 10

500

1000
Channel−1

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−2

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−3

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−4

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−5

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−6

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−7

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 2 4 6 8 10

500

1000
Channel−8

Time(s)

F
re
q
u
e
n
c
y
(M
H
z
)

0 1 2 3 4 5 6 7 8 9 10
300

400

500

600

700

800

900

1000
Channel−x

Time(s)

F
re

q
u
e
n
c
y
(M

H
z
)

Fig. 12. Operating frequency per channel (8 channels) at different points of execution of NAS FT with 3 Levels (left), and Ganged (right)

with three different frequency selection methods. We can

observe that there is not much difference in the operating

frequencies with all the search methods once the system

transitions to the lowest frequency level. With Exhaustive

search the control algorithm does not perform many frequency

switches, which serves as an explanation as to why the energy

savings with Exhaustive and Ganged search are similar. The

system transitions to the lowest frequency level in all the three

cases, and the energy savings are lower with 3 Level search

because to transition to 400MHz, all the channels should

first transition to 600MHz and then to 533MHz. The same

discussion can be extended to explain the results obtained with

Default mapping algorithm.

Figure 8 shows the energy savings and the increase in

the execution time obtained with a 8 channel system. The

figures show that the average energy savings for BT, FT and

CG are 45.13%, 50.30% and 52.47%. The energy savings

obtained with BT are higher when channels are controlled

independently with 3 Level search, for both Default and Inter-

leaving mapping algorithms. However, the difference in energy

savings between Ganged and 3 Level is high for BT with

Default mapping algorithm due to the additional imbalance

in channel traffic generated by Default mapping. Increasing

the number of channels also increases the complexity of the

control algorithm, as explain previously. Study of memory

access patterns showed increase in imbalance among channels

when the number of channels is increased. This presents the

control algorithm with even fine grained control. Controlling

the channels independently can present more opportunities to

save energy since channels that have very low traffic can

be operated at the lowest frequency, while the frequency of

loaded channels can be increased. However, this is not possible

when all the channels are slaved together. Figure 12 shows the

operating frequencies of FT with Ganged and 3 Level search,

and it can be seen that 3 Level search obtains lower energy

savings because all the channels transition to 600MHz and

then to 533MHZ before switching to the lowest operating

frequency.

Figure 9 shows the energy savings and the increase in

the execution time obtained with a 16 channel system. The

figures show that the energy savings with Interleaving mapping

are higher than with Default mapping. Energy savings are

higher with 16 channels compared to 4 and 8 channels.

Moreover, the distribution of traffic with interleaving mapping

produced better results for Ganged with Default mapping

since the mapping reduces activity in some channels, and the

distribution of traffic is significantly unequal across all the

channels, as shown in Figure 5.

The average energy savings we obtained using Interleaved

mapping and 4 channels are 48.1% with Ganged search

and 49.1% when the channels are controlled independently,

and energy savings went up from 48% to 50.5% when the

number of channels is increased from 4 to 8. Average energy

savings using Default mapping and 4 channels are 48% with

Ganged search and 49.8% when the channels are controlled

independently, and the energy savings increased from 47% to

51.8% when the number of channels is increased from 4 to 8.

Results from both mapping algorithms indicate that controlling

the channel’s frequency independently is more effective with

8 or more channels.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Dynamic Voltage and Frequency

memory Scaling to reduce energy consumption considering

the ability to select different frequencies for different memory

channels. The analysis of HPC applications memory band-

width demand showed that there are significant fluctuations

in the memory bandwidth demand over time, and that the

memory traffic is unequally distributed to all channels. The

results obtained with different number of channels, mapping

algorithms and frequency selection methods show that DVFS

is an effective technique to significantly reduce the energy

consumed by main memory while maintaining performance

degradation within tolerable limits. The results also showed

that controlling the channels independently provides consider-

able savings with respect to controlling the frequency of all the

channels together, and controlling the channels independently

is more effective when number of channels is larger.

As a part of our future work, we will extend the cur-

rent approach with an even fine grained simulations and a

sophisticated performance model that incorporates complex

scheduling strategies used by modern memory controllers.

We will also consider additional benchmarks that might ex-

hibit higher memory access imbalance as well as additional

parameters such as different number of cores and different

memory technologies. Finally, we will improve our control

algorithm with predictive strategies, such as those based on

phase detection techniques.

ACKNOWLEDGMENT

The research presented in this work is supported in part by

National Science Foundation (NSF) via grants numbers IIP

0758566, CCF-0833039, DMS-0835436, CNS 0426354, IIS

0430826, and CNS 0723594, by Department of Energy via the

grant number DE-FG02-06ER54857, by The Extreme Scale

Systems Center at ORNL and the Department of Defense, and

by an IBM Faculty Award, and was conducted as part of the

NSF Center for Autonomic Computing at Rutgers University.

This material was based on work supported by the NSF,

while working at the Foundation. Any opinion, finding, and

conclusions or recommendations expressed in this material;

are those of the author and do not necessarily reflect the views

of the NSF. The authors would like to thank Ciprian Docan

for their help in preparing this paper and the referees for their

very constructive and helpful comments.

REFERENCES

[1] “Report to congress on server and data center energy efficiency,” U.S.
Environmental Protection Agency, Tech. Rep., August 2007.

[2] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, pp. 33–37, 2007.

[3] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar, H. Seshadri, and
S. Poole, “Investigating the potential of application-centric aggressive
power management for hpc workloads,” in 17th International Confer-

ence on High Performance Computing (HiPC), 2010, pp. 1–10.

[4] “Jedec. ddr3 sdram standard,” 2009.

[5] Micron, “Calculating memory system power for ddr3,” July 2007.

[6] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server
clusters,” in 2nd international conference on Power-aware computer

systems, 2003, pp. 179–197.

[7] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time dynamic
voltage scaling: exploiting inter-node slack to save energy in MPI
programs,” in ACM/IEEE conference on Supercomputing (SC), 2005,
p. 33.

[8] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained dis-
tributed dvs scheduling for scientific applications on power-aware clus-
ters,” in ACM/IEEE conference on Supercomputing (SC), 2005, p. 34.

[9] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” in 36th Annual Symposium on Foundations of Computer

Science, 1995, p. 374.

[10] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor real-
time systems,” IEEE Trans. Parallel Distrib. Syst., vol. 14, July 2003.

[11] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González, “Meeting points: using thread criticality to adapt multicore
hardware to parallel regions,” in International Conference on Parallel

Architectures and Compilation Techniques, 2008, pp. 240–249.

[12] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. J. Irwin, “Hardware and Software Techniques for Controlling DRAM
Power Modes,” IEEE Trans. Comput., vol. 50, no. 11, pp. 1154–1173,
2001.

[13] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Energy-
oriented compiler optimizations for partitioned memory architectures,”
in International conference on Compilers, Architecture, and Synthesis

for Embedded Systems (CASES’00), 2000, pp. 138–147.

[14] V. Delaluz, M. Kandemir, and I. Kolcu, “Automatic data migration for
reducing energy consumption in multi-bank memory systems,” in 39th

Design Automation Conference (DAC’02), 2002, pp. 213–218.
[15] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and

M. J. Irwin, “Scheduler-based DRAM energy management,” in 39th

Design Automation Conference (DAC’02), 2002, pp. 697–702.
[16] Y. Cho and N. Chang, “Memory-aware energy-optimal frequency assign-

ment for dynamic supply voltage scaling,” in International Symposium

on Low Power Electronics and Design (ISLPED’04), 2004, pp. 387–392.
[17] M. C. Huang, J. Renau, and J. Torrellas, “Positional adaptation of proces-

sors: application to energy reduction,” in 30th International Symposium

on Computer Architecture (ISCA’03), 2003, pp. 157–168.
[18] H. B. Fradj, C. Belleudy, and M. Auguin, “System level multi-bank

main memory configuration for energy reduction,” in International

Workshop on Power and Timing Modeling, Optimization and Simulation

(PATMOS), 2006, pp. 84–94.
[19] H. B. Fradj, C. Belleudy, and M. Auguin, “Multi-bank main memory

architecture with dynamic voltage frequency scaling for system energy
optimization,” in Euromicro Conference on Digital System Design

(DSD), 2006, pp. 89–96.
[20] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar, “Per-

formance directed energy management for main memory and disks,” in
11th International conference on Architectural support for programming

languages and operating systems, 2004, pp. 271–283.
[21] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance directed energy man-

agement for main memory and disks,” ACM Transactions on Storage,
vol. 1, no. 3, pp. 346–380, 2005.

[22] X. Li, R. Gupta, S. V. Adve, and Y. Zhou, “Cross-component energy
management: joint adaptation of processor and memory,” ACM Trans.

Archit. Code Optim., vol. 4, no. 3, p. 14, 2007.
[23] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the

power consumption of main memory,” in 34th International Symposium

on Computer Architecture (ISCA’07), 2007, pp. 290–301.
[24] I. Hur and C. Lin, “A comprehensive approach to DRAM power

management,” in 14th International Conference on High-Performance

Computer Architecture (HPCA), 2008, pp. 305–316.
[25] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled dimm: building

high-bandwidth memory system using low-speed dram devices,” in 36th

International symposium on Computer architecture, 2009, pp. 255–266.
[26] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu,

“Mini-rank: Adaptive dram architecture for improving memory power
efficiency,” in 41st IEEE/ACM International Symposium on Microarchi-

tecture, 2008, pp. 210–221.
[27] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,

A. Davis, and N. P. Jouppi, “Rethinking dram design and organization
for energy-constrained multi-cores,” in 37th International symposium on

Computer architecture, 2010, pp. 175–186.
[28] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Mem-

scale: active low-power modes for main memory,” in 6th International

conference on Architectural support for programming languages and

operating systems, 2011, pp. 225–238.
[29] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,

“Memory power management via dynamic voltage/frequency scaling,”
in 8th ACM International Conference on Autonomic Computing, 2011,
pp. 31–40.

[30] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, , and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation.” ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, 2005.
[31] K. Hazelwood, G. Lueck, and R. Cohn, “Scalable support for mul-

tithreaded applications on dynamic binary instrumentation systems,”
in 2009 International Symposium on Memory Management (ISMM),
Dublin, Ireland, June 2009, pp. 20–29.

[32] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob, “Cmpsim: A pin-
based on-the-fly multi-core cache simulator,” in 4th Annual Workshop

on Modeling, Benchmarking and Simulation (MoBS), 2008.
[33] J. Moses, K. Aisopos, A. Jaleel, R. Iyer, R. Illikkal, D. Newell, and

S. Makineni, “Cmpschedsim: Evaluating os/cmp interaction on shared
cache management,” in IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2009, pp. 113–122.
[34] “Pagemap - Linux Kernel - Documentation / vm / pagemap.txt,” January

2011.

