Exploring Software Defined Federated Infrastructures for Science

Moustafa Abdelbaky, Javier Diaz-Montes, and Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)
Rutgers Discovery Informatics Institute (RDI²)
Rutgers, The State University of New Jersey
http://parashar.rutgers.edu/
Outline

• Federated computing, software defined systems, …. and Science

• Initial explorations with dynamic federation using CometCloud

• Towards a software-defined federated infrastructure for science

• Summary / Conclusion
FEDERATED COMPUTING, SOFTWARE DEFINED SYSTEMS
The Lure of Clouds

- An attractive platform for supporting the computational and data needs of academic and business applications

- The Cloud paradigm:
 - “Rent” resources as cloud services on-demand and pay for what you use
 - Potential for scaling-up/down/out as well as for IT outsourcing

- Landscape of heterogeneous cloud services spans private clouds, public clouds, data centers, etc.
 - Novel dynamic Marketplaces - Heterogeneous offering with different QoS, pricing models, geographical locations, availability, capabilities, and capacities

- Cloud federations extend as-a-service models to virtualized data-centers federations
Clouds as Enablers of Science

- Clouds are rapidly joining traditional CI as viable platforms for scientific exploration and discovery

- Possible usage modes:
 - Clouds can simplify the deployment of applications and the management of their execution, improve their efficiency, effectiveness and/or productivity, and provide more attractive cost/performance ratios
 - Cloud support the democratization
 - Cloud abstractions can support new classes of algorithms and enable new applications formulations
 - Application driven by the science, not available resources

- Many challenges
 - Application types and capabilities that can be supported by clouds?
 - Can the addition of clouds enable scientific applications and usage modes that are not possible otherwise?
 - What abstractions and systems are essential to support these advanced applications on different hybrid platforms?
Cloud Usage Modes for Science

• **HPC in the Cloud** – outsource entire applications to current public and/or private Cloud platforms

• **HPC plus Cloud** – Clouds complement HPC/Grid resources with Cloud services to support science and engineering application workflows, for example, to support heterogeneous requirements, unexpected spikes in demand, etc.

• **HPC as a Cloud** – expose HPC/Grid resources using elastic on-demand Cloud abstractions

Federated Computing for Science (I/II)

- Scientific applications can have large and diverse compute and data requirements

- Federated computing is a viable model for effectively harnessing the power offered by distributed resources
 - Combine capacity, capabilities

- HPC Grid Computing - monolithic access to powerful resources shared by a virtual organization
 - Lacks the flexibility of aggregating resources on demand (without complex infrastructure reconfiguration)

- Volunteer Computing - harvests donated, idle cycles from numerous distributed workstations
 - Best suited for lightweight independent tasks, rather than for traditional parallel computations
Federated Computing for Science (II/II)

• Current/emerging science and engineering application workflow exhibit heterogeneous and dynamic workloads, and highly dynamic demands for resources
 – Various and dynamic QoS requirements
 • Throughput, budget, time
 – Unprecedented amounts of data
 • Large size, heterogeneous nature, geographic location

• Such workloads are hard to efficiently support using classical federation models
 – Rigid infrastructure with fixed set of resources

• Can we combine the best features of each model to support varying application requirements and resources' dynamicity?
 – Provisioning and federating an appropriate mix of resources on-the-fly is essential and non-trivial
Software Defined ….

- **Software Defined Networks**
 - An approach to building computer networks that separates and abstracts elements of these systems (Wikipedia)
 - E.g., separation of control and data plane

- **Software Defined Systems**
 - Based on software defined networking (SDN) concepts
 - Allow business users to describe expectations from their IT in a systematic way to support automation
 - Enable the infrastructure to understand application's needs through defined policies that control the configuration of compute, storage, and networking, and it optimizes application execution
 - Open virtualization, Policy driven optimization and elasticity – autonomies, Application awareness

- See also software defined data centers, ….
EXPLORING FEDERATED INFRASTRUCTURE FOR SCIENCE USING COMETCLOUD
CometCloud

- Enable applications on dynamically federated, hybrid infrastructure exposed using Cloud abstractions
 - **Services**: discovery, associative object store, messaging, coordination
 - **Cloud-bursting**: dynamic application scale-out/up to address dynamic workloads, spikes in demand, and extreme requirements
 - **Cloud-bridging**: on-the-fly integration of different resource classes (public & private clouds, data-centers and HPC Grids)

- High-level programming abstractions & autonomic mechanisms
 - Cross-layer Autonomics: Application layer; Service layer; Infrastructure layer

- Diverse applications
 - Business intelligence, financial analytics, oil reservoir simulations, medical informatics, document management, etc.

http://cometcloud.org
Autonomics in CometCloud

- **Autonomic manager** manages workflows, benchmarks application and provision resources.

- **Adaptivity manager** monitors application performance and adjusts resource provisioning.

- **Resource agent** manages local cloud resources, accesses task tuples from CometCloud and gathers results from local workers so as to send them to the workflow (or application) manager.
On-Demand Elastic Federation using CometCloud

- Autonomic cross-layer federation management
 - Resources specified based on availability, capabilities, cost/performance constraints, etc.
 - Dynamically assimilated (or removed)
 - Resources coordinate to:
 - Identify themselves / verify identity
 - Advertise their resources capabilities, availabilities, constraints
 - Discover available resources
- Federation coordinated using Comet Spaces
- Autonomic resource provisioning, scheduling and runtime adaptations
- Business/social models for resource sharing
Software Defined Cyberinfrastructure Federations for Business and Science?

- Combine cloud abstractions with ideas from software-defined environments
- Create a nimble and programmable environment that autonomously evolves over time, adapting to:
 - Changes in the infrastructure
 - Application requirements
- Enable efficient data processing by
 - Allocating computing close to data sources
 - Process data in-situ and/or in-transit
- Independent control over application and resources
Software-defined Ecosystem

Scientific Applications & Workflows
- Workflow definition
- Objectives (deadline, budget)
- Requirements (throughput, memory, I/O rate)
- Defined in terms of science (e.g., precision, resolution) - vary at runtime -

Autonomic Manager
- Identify utility of federation
- Negotiate with application
- Ensure applications’ objectives and constraints
- Adapt and reconfigure resources and network on the fly

User/Provider
- Define federation programmatically using rules and constraints
 - Availability
 - Capacity & Capability
 - Cost
 - Location
 - Access policy - vary at runtime -

Elastic Cyber-infrastructure
- Exposed as a cloud to the application/workflow
- Synthesize a space-time federated ACI
Software-defined ACI: ACI-as-a-Cloud

- Software defined ACI federations exposed using elastic on-demand Cloud abstractions

- Declaratively specified to define availability as well as policies and constraints to regulate their use
 - Use of a resources may only be allowed at certain times of the day, or when they are lightly loaded, or when they have sufficient connectivity, etc.
 - Prefer certain type of resources over others (e.g., HPC versus clouds or “free" HPC systems versus the allocation-based ones)
 - Specify how to react to unexpected changes in the resource availability or performance
 - Use resources only within the US or Europe due to the laws regulating data movement across borders

- Evolve in time and space -- the evaluation of these constraints provides a set of available resources at evaluation time

- Leverage software-defined networks to customize and optimize the communication channels or software-defined storage to improve data access
Software-defined ACI: Platform as a Service

• Platform as a Service to decouple applications from the underlying ACI Cloud

• Key components
 1. An API for building new applications or application workflows
 2. Mechanisms for specifying and synthesizing a customized views of the ACI federation that satisfies users' preferences and resource constraints
 3. Scalable middleware services that expose resources using Cloud abstractions
 4. Elasticity exposed in a semantically meaningful way
 5. Autonomics management is critical

• CometCloud provides some of these - currently focusing on 2
Many technical issues

- **Deployability**: Must be easy to deploy by a regular user without special privileges
- **Standardization/Interoperability**: Interact with heterogeneous resources
- **Self-discovery**: Discovery mechanisms to provide a realistic view of the federation
- **Scalability and extended capacity**: Scale across geographically distributed resources
- **Elasticity**: Ability to scale up, down or out on-demand
- **Security, Authentication, Authorization, Accounting** …..
Related Work - Cloud Federation

• Cloud Bursting (scaling out to a cloud when needed)
 – Extending local cluster to a cloud with different scheduling policies (M. D. de Assuncao et. al)
 – Extending Austrian Grid with a private cloud (S. Ostermann et. al)
 – Extending grid resources to a Nimbus cloud (C. Vazquez et. Al)

• Hybrid Grid and Cloud
 – Creating a large-scale distributed virtual clusters using federated resources from FutureGrid and Grid’5000 (P. Riteau et. al)
 – Infrastructure to manage the execution of service workflows in a union of a grid and a cloud (L. F. Bittencourt et. al)

• Cloud of Clouds
 – Federation of Amazon EC2 and NERSC’s Magellan cloud (I. Gorton et. al)
 – Using Pegasus and Condor to federate FutureGrid, NERSC’s Magellan cloud and Amazon EC2 (J.-S. Vockler et. al)

• Federation Models
 – Composing cloud federation using a layered service model (D. Villegas et. al)
 – Cross-federation model using customized cloud managers (A. Celesti et. al)
 – A reservoir model that aims at contributing to best practices (B. Rochwerger et. al)
Relevant Related Projects

• FED4FIRE (European Union FP7)
 – A common federation framework for developing, adapting or adopting tools that support experiment lifecycle management, monitoring and trustworthiness

• InterCloud (Univ. of Melbourne, Australia)
 – Utility-oriented federation of cloud computing environments for scaling of application services

• Business Oriented Cloud Federation (Univ. of South Hampton, UK)
 – Cloud federation model via computation migration for real time applications; targets real-time online interactive applications, online games

•
Autonomics in Multi-Cloud Environments

- **Links with Control theory** From Chenyang Lu (Washington Univ. in St Louis)
 - Provide QoS and related guarantees in open, unpredictable environments

 - VM Consolidation and dynamic VM allocation

 - Medium term predictions using Wavelets
 - Use of an “adaptive” copy rate

 - Modelling decisions as a Markov Decision Process to support elastic behaviour

 - Reactive and proactive auto scaling mechanisms based on monitoring
An Initial Experiment: Fluid Flow in Microchannel

- Controlling fluid streams at microscale is of great importance for biological processing, creating structured materials, etc.
- Placing pillars of different dimensions, and at different offsets, allows “sculpting” the fluid flow in microchannels.
- Four parameters affect the flow:
 - Microchannel height
 - Pillar location
 - Pillar diameter
 - Reynolds number
- Each point in the parameter space represents simulation using the Navier-Stokes equation (MPI-based software).
- Highly heterogeneous and computational cost is hard to predict a priori.
- Global view of the parameter space requires 12,400 simulations (three categories).
Fluid Flow in Microchannel Experiment Setup

- Minimum Time of Completion - Elastically and opportunistically federate resources
- Global view of the parameter space requires 12,400 simulations (three categories)
- Experiment completely performed within user space (SSH)
- 10 different HPC resources from 3 countries

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Cores†</th>
<th>Network</th>
<th>Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excalibur</td>
<td>IBM BG/P</td>
<td>8,192</td>
<td>BG/P</td>
<td>LoadLeveler</td>
</tr>
<tr>
<td>Snake</td>
<td>Linux SMP</td>
<td>64</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Stampede</td>
<td>iDataPlex</td>
<td>1,024</td>
<td>IB</td>
<td>SLURM</td>
</tr>
<tr>
<td>Lonestar</td>
<td>iDataPlex</td>
<td>480</td>
<td>IB</td>
<td>SGE</td>
</tr>
<tr>
<td>Hotel</td>
<td>iDataPlex</td>
<td>256</td>
<td>IB</td>
<td>Torque</td>
</tr>
<tr>
<td>India</td>
<td>iDataPlex</td>
<td>256</td>
<td>IB</td>
<td>Torque</td>
</tr>
<tr>
<td>Sierra</td>
<td>iDataPlex</td>
<td>256</td>
<td>IB</td>
<td>Torque</td>
</tr>
<tr>
<td>Carver</td>
<td>iDataPlex</td>
<td>512</td>
<td>IB</td>
<td>Torque</td>
</tr>
<tr>
<td>Hermes</td>
<td>Beowulf</td>
<td>256</td>
<td>10 GbE</td>
<td>SGE</td>
</tr>
<tr>
<td>Libra</td>
<td>Beowulf</td>
<td>128</td>
<td>1 GbE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: † – peak number of cores available to the experiment.
Summary of the Experiment

~16 days of continuous execution
12,845 tasks processed (445 extra)
2,897,390 CPU-hours consumed
400 GB of data generated
HPC as a Service (Winner SCALE’11)

Demonstrated how the cloud abstraction can be effectively used to support ensemble geo-system management applications on a geographically distributed federation of supercomputing systems using a pervasive portal running on an iPad

http://nsfcac.rutgers.edu/icode/scale
HPC as a Service (IEEE Computer 10/12)

- HPC as a Service using federation of IBM Blue Gene/P systems
- Elastically scale up to 22K processors
Accelerating Protein Folding using Advanced Computational Infrastructure (Rutgers + BMS)

Individual trajectories
- Parallel NAMD trajectories
- Asynchronous communication in cometCloud

Science
- Be smart about using resources
- Commodity hardware versus high end resources
- Terminate or restart resources

Infrastructure
- Federated clouds

Scaling of NAMD

- XSEDE (TACC)
- Rutgers Cluster
- Excalibur
- RepEx App
- EC²
- FutureGrid
Based on replica progress, Autonomic Master stops commodity trajectory and starts replica set on high performance resources.

*Could run multiple replicas per temperature to improve likelihood of asynchronous exchange on heterogeneous hardware.

*8 temperatures = 1 ensemble

http://youtu.be/sg2C7N7g5CU
Enterprise Business Data Analytics

- Decentralized Clustering Analysis
- Algorithm to study large multi-dimensional information space
- Search and correlate different attributes with known data sources, and allow visualizing and interpreting the results interactively

- The space is divided into regions and each region is assigned to a processing node
- Clusters are recognized by evaluating the relative density of points in a given region
- Nodes must communicate with neighbors to account for clusters that occur across region boundaries
Experiment

• Deadline-driven workflows
 – Each workflow has 3 different stages of the DOC application
 • Each stage of the workflow has a different execution time
 • Each stage is a task which is completed by 1 agent and 2 workers
 – Deadline for a workflow is set to average 300 seconds (100 seconds per stage)
 – Submitting workflows every 10 seconds during initial 600 seconds of experiment
 – CloudBurst – No CloudBurst

• Resources
 – Rutgers cluster has 27 machines
 – Amazon EC2 - c1.medium instance type
Deadline-Driven Results

No CloudBurst

CloudBurst

Deadline
Completion

Waiting stages
Deadline-urgent stages
Running agents

Number of stages

Time (seconds)
Other experiments

- Data-Driven Workflows on Federated Clouds [Cloud’14]
- Federating Resources using Social Models [IC2E’14]
- Elastic Federations for Large-scale Scientific Workflows [MTAGS’13]
- HPC plus Cloud Federations [e-Science’10]
- … [See cometcloud.org]

- Testbed using resource in US (RU, FutureGrid, XSEDE, IBM), UK (Cardiff), Amazon EC2

- Experiments successful…. but can the model be generalized?
Summary

• Emerging CDS&E workflows have dynamic and non-trivial computational/data requirements
 – Necessitate dynamically federated platforms that integrate heterogeneous resources / services
 – Provisioning and federating an appropriate mix of resources on-the-fly is essential and non-trivial

• Software-defined Advanced Cyber-Infrastructure for Science
 – Software defined ACI federations exposed using elastic on-demand Cloud abstractions
 – Application access using established programming abstraction/platforms for science
 – Autonomic management is critical

• Many challenges at multiple layers
 – Application formulation, programming systems, middleware services, standardization & interoperability, autonomic engines, etc.
The CometCloud Team

• Ph.D. Students
 – Moustafa AbdelBaky, Dept. of Electrical & Computer Engr.
 – Mengsong Zou, Dept. of Computer Science
 – Ali Reza Zamani, Dept. of Computer Science
 – Shivaramakrishnan Vaidyanathan, Dept. of Computer Science

• Faculty
 – Manish Parashar, Ph.D. - Dept. of Computer Science, Rutgers Discovery Informatics Institute (RDI2)
 – Javier Diaz-Montes, Ph.D. - Rutgers Discovery Informatics Institute
 – Esma Yildirim, Ph.D. - Rutgers Discovery Informatics Institute

And many collaborators….

CometCloud: http://cometcloud.org
Thank You!

Manish Parashar, Ph.D.
Rutgers Discovery Informatics Institute (RDI²)
Rutgers, The State University of New Jersey

Email: parashar@rutgers.edu
WWW: http://parashar.rutgers.edu/
CometCloud: http://cometcloud.org